

Page 1 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Using Perfmon and Performance Profiling to

Tune Snort Preprocessors and Rules

06 November 2009

Prepared By:
Steven Sturges

Sourcefire, Incorporated
9770 Patuxent Woods Drive

Columbia, MD 21046

Page 2 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Overview
This document describes guidelines for tuning Snort based on performance statistics from the
rule and preprocessor profiling and perfmon preprocessor.

It is intended for Snort administrators, to be used when tuning and troubleshooting
performance problems.

Perfmon Preprocessor
The perfmon preprocessor has been included with Snort since Snort 1.9. There are a number of
aspects of the perfmon data that help a user tune Snorts configuration.
Some of the individual data items listed in the Snort manual under the Performance Monitor
Preprocessor section will be used. Understanding the meaning of those performance metrics is
paramount to tuning Snort.
A sample Perfmon Preprocessor Output from console is shown below from a test pcap in readback
mode. With pcap readback mode, there will be no dropped packets.
Snort Realtime Performance : Wed Aug 19 10:23:07 2009

Pkts Recv: 1858011

Pkts Drop: 0

% Dropped: 0.000%

Blocked: 0

Pkts Filtered TCP: 0

Pkts Filtered UDP: 0

Mbits/Sec: 139.663 (wire)

Mbits/Sec: 0.000 (mpls)

Mbits/Sec: 0.391 (ip fragmented)

Mbits/Sec: 0.377 (ip reassembled)

Mbits/Sec: 3.162 (tcp rebuilt)

Mbits/Sec: 142.434 (app layer)

Bytes/Pkt: 609 (wire)

Bytes/Pkt: 0 (mpls)

Bytes/Pkt: 825 (ip fragmented)

Bytes/Pkt: 1692 (ip reassembled)

Bytes/Pkt: 1024 (tcp rebuilt)

Bytes/Pkt: 613 (app layer)

KPkts/Sec: 28.620 (wire)

KPkts/Sec: 0.000 (mpls)

KPkts/Sec: 0.059 (ip fragmented)

KPkts/Sec: 0.028 (ip reassembled)

KPkts/Sec: 0.386 (tcp rebuilt)

KPkts/Sec: 29.033 (app layer)

PatMatch: 23.521%

CPU Usage: 89.562% (user) 3.581% (sys) 6.857% (idle)

Page 3 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Alerts/Sec : 53.927

Syns/Sec : 1313.853

Syn-Acks/Sec : 269.068

New Cached Sessions/Sec: 757.819

Midstream Sessions/Sec : 64.617

Cached Sessions Del/Sec: 757.819

Closed Sessions/Sec : 116.958

TimedOut Sessions/Sec : 627.367

Pruned Sessions/Sec : 112.122

Dropped Async Ssns/Sec : 0.000

Current Cached Sessions: 0

Sessions Initializing : 34

Sessions Established : 33

Sessions Closing : 0

Max Cached Sessions : 8179

Max Sessions (interval): 8179

Stream Flushes/Sec : 385.733

Stream Cache Faults/Sec: 0

Stream Cache Timeouts : 40729

Frag Creates()s/Sec : 29.575

Frag Completes()s/Sec : 27.865

Frag Inserts()s/Sec : 29.559

Frag Deletes/Sec : 29.575

Frag AutoFrees/Sec : 0.000

Frag Flushes/Sec : 27.865

Current Cached Frags : 0

Max Cached Frags : 113

Frag Timeouts : 0

Frag Faults : 0

New Cached UDP Ssns/Sec: 0.000

Cached UDP Ssns Del/Sec: 0.000

Current Cached UDP Ssns: 0

Max Cached UDP Ssns : 0

Attribute Table Hosts : 0

Attribute Table Reloads: 0

Throughputs and Other Rates
The first group of metrics reported by perfmon is rates for various aspects of Snort’s detection. Those
include a drop rate, as reported by pcap_stats(), megabits per second (processed by Snort), alerts per
second, packets per second and bytes per packet. The better Snort is performing, the lower the drop
rate, higher the megabits per second (throughput), higher the average packet size, etc.

Pattern Matching
The next statistic is pattern match percentage. This is the number of bytes that Snort is passing
through the pattern matcher to identify possible rules, compared to the total number of bytes seen by
Snort. This number could be higher than 100%, in the case of IP defragmentation, TCP reassembly,
DCE/RPC reassembly, etc. Ideally this would be in the 10% range.

Page 4 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

 To reduce the pattern match percentage, it is first best to eliminate un-necessary reassembly
(only reassembly on the ports and services that are critical to protect – and only one side of
those connections. This can be done through proper configuration of Stream TCP
reassembly.

 If possible, eliminate traffic from being inspected by Snort at all via an ignore_ports
configuration option as well as the use of various preprocessors (SSL, SSH, FTP/Telnet,
and others) to not inspect encrypted traffic and file transfers. Since native Snort cannot
decrypt traffic, inspecting encrypted traffic over SSL or SSH is a waste of system resources.
Additionally, a BPF can be specified to cause Snort to completely ignore the traffic
matching the filter criteria.

 Reduce the amount of HTTP client and server traffic that is inspected by using HTTP
Inspect’s client_flow_depth and server_flow_depth options.

 Reduce the amount of DCE/RPC reassembled data that is inspected by using the DCE/RPC
max_frag_len option.

 One of the features of TCP reassembly is to eliminate evasions of items split across packets.
If there are many large packets on the network, use the Stream5 TCP Option
dont_store_large_packets to eliminate the inclusion of those large packets in TCP
reassembly.

Amount of total processing time for pattern matching will also be affected by these settings. See
section 0 for details on preprocessor profiling and processing time.

Stream Performance
The next group of statistics reported by perfmon relates to TCP Stream (Stream5) and includes rates
for creating new connections, terminating connections, and TCP session cache performance. A few
key statistics here related to each other include the rate of new and deleted sessions, current sessions in
the cache, maximum number of sessions in the cache, cache faults and timeouts. Further breakdowns
of the TCP stats in terms of rates for sessions that are created mid-stream, closed normally, pruned for
memory constraints, or timed-out are also available.

 Large numbers of cache faults could result in thrashing of the TCP session cache and can be
addressed by proper configuration of the Stream memcap and max_tcp settings. If the
memcap is too low relative to the max_tcp and the TCP ports used for reassembly,
memory starvation will occur. Snort will self-regulate by deleting older (least recently
used) TCP sessions from the cache even though those sessions may still be active on the
wire.

 Snort is best not deployed in an asymmetric traffic environment. Doing so will result in
large numbers of stream cache faults and/or timeouts. An easy way to identify this is to
compare the SYNs per second to the SYN/ACKs per second. A greater than 2-1 ratio could
indicate a routing or retransmit issue on your network.

 A low setting for the Stream timeout configuration will cause more sessions to timeout
abnormally, especially if the applications and/or firewall controlling the traffic being seen
by Snort use significantly different timeouts.

Page 5 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

 Whether from a misconfiguration of the Stream memcap, max_tcp, or timeout, when
traffic from a still active session that was deleted from the cache is seen by Snort, Snort will
delete another older session. If poorly configured, this will cause a thrashing of deleting
and re-creating TCP sessions. This leads to both poor performance and evasion
opportunities.

 Recommended settings for a system w/ 2GB of system memory, assuming 1GB available to
Snort, are 256k max_tcp and a memcap of 137MB. This is assuming the default set of
ports are used for TCP reassembly and a traffic profile of 15% DCE/SMB, 15% SMTP,
10% DNS, 10% FTP, and the rest HTTP.

 Similar to TCP sessions, the UDP session cache has stats that reflect its performance.
Recommended values for a similar system are 64k for max_udp. That should be
configured relative to the amount of UDP traffic on the network being monitored.

IP Defrag Performance
As is the case with TCP Stream reassembly, improperly configured IP defragmentation (frag3) settings
will adversely affect performance as well as lead to evasion opportunities. If IP defragmentation is not
seen on your network, simply turn off frag3, to eliminate a small performance hit when Snort checks if
packets are fragmented.
If the network does experience fragmentation, a number of statistics reported by perfmon are available
to help tune Frag3. In particular, the Frag-Auto Deletes, Frag-Flushes, Frag-Current, Frag-Max, Frag-
Timeouts, and Frag-Faults values are important. Frag Auto-Deletes and Frag-Faults relate to the
memory settings whether preallocating fragment storage or using a memcap.
The Frag3 max_frags limits the number of simultaneous in process defragmentations, while the
memcap limits the memory used to store individual fragment nodes.

Preallocation of fragment nodes will help performance because Snort will not incur an expensive
memory allocation and free when fragments are stored and later used, but rather allocate at
initialization and recycle the memory. Use either prealloc_memcap or prealloc_frags to
preallocate fragment nodes. The size of the fragment node is based on the snap length, so adjust these
values as the frame size changes.

CPU Usages
When performance statistics are generated Snort will capture the CPU usage on the system as reported
by the kernel or proc filesystem. The CPU usage is a snapshot, so for a single instance of performance
statistics, it is not indicative of an issue. However, consistent high CPU usage, where the user and/or
system approach 100% and idle is near 0% is indicative that Snort or some other process is consuming
most of the CPU.
Tuning Snort’s preprocessors and the rule set as described throughout this document will help alleviate
high CPU consumption.

Page 6 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Averages
The next group of statistics is a breakdown of averages of throughput, bytes per packet, and packets
per second for 5 areas: wire, ip fragmented, ip defragmented, tcp reassembled, and application layer.
The numbers for the application layer are the most important, as those are the ones bytes/packets that
are passed through the application preprocessors for normalization and rule inspection. Reducing the
application values through the means noted above in section 0 – BPFs, ignore_ports, and/or
ignoring encrypted connections – will help improve the performance of Snort for the traffic that is
important to inspect.
Snort also logs stats relating to the number of packets pcap received, number of packets pcap dropped
(that didn’t reach Snort because of high CPU usage), number blocked (when inline), and a drop
percentage. Ideally, Snort will be tuned such that the drop percentage is 0.

Using Flow Data
Perfmon has an option that prints out stats about packet sizes and flow data. A sample of that is shown
below from the same sample pcap. This information may be useful in tuning both the application
preprocessors and rules.
The first category (Protocol Byte Flows) shows a breakdown of how much data is sent across each
protocol that Snort inspects.
Protocol Byte Flows - %Total Flow

TCP: 95.60%

UDP: 3.69%

ICMP: 0.15%

OTHER: 0.57%

The next category (PacketLen) shows the distribution of the packet sizes, independent of protocol.
TCP ACK packets contribute significantly to the smaller packet sizes (60-66 bytes). If a significant
percentage of traffic is large byte TCP packets, Stream5 TCP dont_store_large_packets
option may be used to eliminate it from inclusion in TCP reassembled packets. In the example data,
this would apply if the many of the 30+% of 1514 byte packets are TCP and would be included in TCP
reassembly.
PacketLen - %TotalPackets

Bytes[60] 22.72%

Bytes[62] 1.70%

Bytes[66] 12.56%

Bytes[70] 0.55%

Bytes[74] 5.23%

Bytes[78] 1.05%

Bytes[80] 0.11%

Bytes[86] 0.24%

Bytes[87] 0.12%

Bytes[91] 0.10%

Bytes[92] 0.58%

Bytes[98] 1.72%

Bytes[102] 0.18%

Page 7 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Bytes[106] 0.10%

Bytes[110] 0.69%

Bytes[114] 2.87%

Bytes[118] 0.64%

Bytes[126] 0.16%

Bytes[130] 0.27%

Bytes[134] 0.19%

Bytes[146] 0.66%

Bytes[162] 0.27%

Bytes[166] 0.16%

Bytes[342] 0.78%

Bytes[566] 0.64%

Bytes[590] 1.09%

Bytes[1314] 0.97%

Bytes[1374] 0.20%

Bytes[1434] 0.96%

Bytes[1460] 0.10%

Bytes[1474] 0.28%

Bytes[1486] 0.13%

Bytes[1514] 30.52%

The categories that follow give the distribution of the ports across the different protocols.
The per protocol port distribution is important to know because that will allow proper configuration of
the preprocessors. For example, the pcap has almost 10% traffic across TCP port 22 (SSH). If the
SSH preprocessor is not in use in the configuration, that is traffic that Snort is needlessly inspecting.
Similarly, with traffic on port 443 (HTTPS) and 993 (IMAPS), the SSL preprocessor should be turned
on to ignore that traffic.
On the UDP side, there is traffic on port 137 and 138, so if the rule set doesn’t include Netbios
Datagram or Nameservice rules, those can be ignored via the ignore_ports option or a BPF.
Similarly, traffic on ports 67 & 68 is the BOOTP service or DHCP, so this traffic could be ignored if
there are no DHCP rules in the rule set.
If there are no ICMP rules in use, that traffic can be ignored via a BPF.
TCP Port Flows

Port[22] 9.97% of Total, Src: 87.37% Dst: 12.63%

Port[25] 0.15% of Total, Src: 2.27% Dst: 97.73%

Port[80] 60.51% of Total, Src: 92.20% Dst: 7.80%

Port[143] 0.53% of Total, Src: 96.91% Dst: 3.09%

Port[443] 1.77% of Total, Src: 82.81% Dst: 17.19%

Port[993] 0.28% of Total, Src: 94.78% Dst: 5.22%

Ports[High<->High]: 26.26%

UDP Port Flows

Port[53] 6.22% of Total, Src: 61.89% Dst: 38.11%

Port[67] 28.60% of Total, Src: 48.01% Dst: 51.99%

Port[68] 28.60% of Total, Src: 51.99% Dst: 48.01%

Port[137] 10.62% of Total, Src: 49.89% Dst: 50.11%

Port[138] 6.42% of Total, Src: 50.00% Dst: 50.00%

Port[161] 0.26% of Total, Src: 0.00% Dst: 100.00%

Port[192] 0.50% of Total, Src: 15.31% Dst: 84.69%

Page 8 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Port[427] 0.36% of Total, Src: 0.00% Dst: 100.00%

Port[500] 8.23% of Total, Src: 50.00% Dst: 50.00%

Ports[High<->High]: 51.26%

ICMP Type Flows

Type[0] 7.72% of Total

Type[3] 43.82% of Total

Type[5] 0.17% of Total

Type[8] 48.15% of Total

Type[11] 0.12% of Total

Checklist/Quick Reference
Below is a checklist for using the perfmon statistics and flow data.

Perfmon Statistic Component Recommended Changes/Remedies

Pattern Match % Detection Eliminate traffic from inspection via ignore_ports.

 Proper configuration of SSL, SSH, FTP/Telnet to ignore
traffic.

 Use HTTP Inspect client_flow_depth and
server_flow_depth options and DCE/RPC
max_frag_len option.

 Use Stream5 TCP dont_store_large_packets.

 Use a BPF to pre-filter traffic from Snort.

Stream Session
Cache Timeouts,
Pruned TCP
Sessions/Sec

Stream5 Increase values for Stream5 memcap and max_tcp.

 Check SYNs vs SYN/ACKs to identify asymmertric
routing environments.

Stream Session
Cache Faults,
TimedOut TCP
Sessions/Sec

Stream5 Increase values for Stream5 TCP timeout.

Frag Auto
Deletes/Sec, Frag-
Faults

Frag3 Increase values for Frag3 memcap, prealloc_memcap,
prealloc_frags, max_frags.

Frag Timeouts Frag3 Increase values for Frag3 timeout.

CPU Usage, Drop
Rate

All Tune Snort’s preprocessors and rules.
 Use preallocated memory for Frag3.

Flow Data TCP/UDP
Ports

 Eliminate traffic from inspection via ignore_ports.

 Proper configuration of SSL, SSH, FTP/Telnet to ignore

Page 9 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

traffic.
 Use a BPF to pre-filter traffic from Snort.

Flow Data Large TCP
Packet Sizes

 Use Stream5 TCP dont_store_large_packets.

Preprocessor & Rule Profiling
Profiling uses a close approximation of Snort’s processing time in microseconds to measure how long
various phases of detection take. This is affected by system load – if Snort is sharing CPU, profiling
will not fully reflect the actual time taken.

Preprocessor Profiling
Despite the name, this is more than profiling preprocessors, as the profiling statistics breakdown each
of the many phases of detection into smaller elements, including packet decoding, preprocessing and
normalization (where each preprocessor is decomposed to various degrees), detection (fast pattern
matching and individual rule options), and logging.
To improve overall performance, the desire is to reduce the average time spent on each packet,
represented by the “total” line at the end. The profiling statistics show where Snort is spending
significant amounts of time relative to each other. For example, if a large number of rules are being
evaluated that all use PCRE, the PCRE portion will account for a much larger percentage of rule
evaluation when compared to lesser used rule options.
Some statistics, for example, evaluation of Stream reassembled packets are significantly higher in
terms of average microseconds (and percent of caller). Anywhere a line shows > 100% of caller, that
is intentional and results from the time on that task not being included in the time for the caller. Unless
Snort is terminated abnormally, the checks and exits columns should match.
A sample of preprocessor profiling statistics is shown below.
Preprocessor Profile Statistics (worst 100)
==
 Num Preprocessor Layer Checks Exits Microsecs Avg/Check Pct of Caller Pct of Total
 === ============ ===== ====== ===== ========= ========= ============= ============
 1 detect 0 17414292 17414292 271204527 15.57 57.30 57.30
 1 mpse 1 13621607 13621607 197538443 14.50 72.84 41.74
 2 rule eval 1 14033838 14033838 48991627 3.49 18.06 10.35
 1 rule tree eval 2 15167690 15167690 46237206 3.05 94.38 9.77
 1 preproc_rule_options 3 32484574 32484574 5725411 0.18 12.38 1.21
 2 pcre 3 423215 423215 1992741 4.71 4.31 0.42
 3 content 3 1126848 1126848 705497 0.63 1.53 0.15
 4 byte_test 3 2335674 2335674 695179 0.30 1.50 0.15
 5 flow 3 1892908 1892908 479103 0.25 1.04 0.10
 6 flowbits 3 1757876 1757876 351948 0.20 0.76 0.07
 7 uricontent 3 149306 149306 110861 0.74 0.24 0.02
 8 icmp_id 3 254979 254979 36397 0.14 0.08 0.01
 9 itype 3 73993 73993 14158 0.19 0.03 0.00
 10 isdataat 3 1935 1935 249 0.13 0.00 0.00
 2 rtn eval 2 418409 418409 526055 1.26 1.07 0.11
 2 decode 0 17487378 17487378 68055056 3.89 14.38 14.38
 3 s5 0 17114282 17114282 40696764 2.38 8.60 8.60
 1 s5tcp 1 4494249 4494249 16347963 3.64 40.17 3.45
 1 s5TcpState 2 4423467 4423467 8062964 1.82 49.32 1.70
 1 s5TcpData 3 2262122 2262122 909430 0.40 11.28 0.19
 1 s5TcpPktInsert 4 21690 21690 164331 7.58 18.07 0.03
 2 s5TcpFlush 3 16539 16539 447449 27.05 5.55 0.09
 1 s5TcpProcessRebuilt 4 16538 16538 2059846 124.55 460.35 0.44

Page 10 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

 2 s5TcpBuildPacket 4 16538 16538 23835 1.44 5.33 0.01
 2 s5TcpNewSess 2 115269 115269 560566 4.86 3.43 0.12
 4 DceRpcMain 0 12975854 12975854 13132216 1.01 2.77 2.77
 1 DceRpcSession 1 12975854 12975854 9639261 0.74 73.40 2.04
 5 frag3 0 188875 188875 8496960 44.99 1.80 1.80
 1 frag3rebuild 1 93308 93308 255599 2.74 3.01 0.05
 2 frag3insert 1 93369 93369 214576 2.30 2.53 0.05
 6 httpinspect 0 2232525 2232525 5730661 2.57 1.21 1.21
 7 perfmon 0 17488739 17488739 5170586 0.30 1.09 1.09
 8 eventq 0 34867946 34867946 3789817 0.11 0.80 0.80
 9 backorifice 0 12609034 12609034 2537827 0.20 0.54 0.54
 10 ssl 0 4067788 4067788 1416584 0.35 0.30 0.30
 11 smtp 0 577649 577649 722950 1.25 0.15 0.15
 12 dns 0 2052546 2052546 244260 0.12 0.05 0.05
 total total 0 17379051 17379050 473276804 27.23 0.00 0.00

In the Preprocessor Profile Statistics, five columns are significant, the Checks, Microsecs, Average per
check, Percent of caller, and Percent of total. The Preprocessor, Layer, and Num columns show the
name of the preprocessor or detection phase, the call hierarchy, and the relative position to others
within the same layer.

 Reducing a high number of checks can be achieved by correctly configuring the
preprocessors to use the correct ports1. Properly configuring Snort to ignore traffic that it
cannot inspect (for example, encrypted connections) will reduce both the number of checks
for detection, but also for the related preprocessors.

 Reducing the average per check can be tougher, as that depends both on the size and
content of the packet payload. Correctly managing the ports used for TCP reassembly will
help Snort not needlessly evaluate large blocks of data for which there are no rules or
preprocessors. The default list of TCP ports are related to a default set of protocols for
which there are rules and/or preprocessors. In turning off a collection of rules or a
preprocessor, the corresponding port should be removed from the TCP reassembly ports.
For example if your system is not monitoring a network where there are FTP servers and
you have turned off both ftp/telnet preprocessor and the FTP rules, port 21 should also be
removed from the list of TCP reassembly ports.

 Eliminating unnecessary rules will reduce time for the mpse (multi pattern search engine)
and rule evaluation portion of detect. Identifying unnecessary or overly expensive rules
will be covered in the next section.
If memory allows, use a faster pattern matching algorithm. Snort defaults to AC-BNFA,
which uses less memory, but is 10% slower than AC – use config detection:
search-method ac to switch pattern matchers.

1 This also includes correctly identifying services if using the target-based feature.

Page 11 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Rule Profiling
Rule profiling provides a list of rules, by total expense, per evaluation expense, as well as indicating
which rules resulted in alerts.
A sample of rule profiling statistics is shown below.
Rule Profile Statistics (all rules)
==
 Num SID GID Checks Matches Alerts Microsecs Avg/Check Avg/Match Avg/Nonmatch Disabled
 === === === ====== ======= ====== ========= ========= ========= ============ ========
 1 13827 3 3877459 0 0 4017024 1.0 0.0 1.0 0
 2 13887 3 1059847 0 0 3915850 3.7 0.0 3.7 0
 3 14783 3 5413027 0 0 3418035 0.6 0.0 0.6 0
 4 15486 1 422103 0 0 3335514 7.9 0.0 7.9 0
 5 6420 1 5413027 0 0 3124014 0.6 0.0 0.6 0
 6 6456 1 5413027 0 0 3124014 0.6 0.0 0.6 0
 7 4246 1 5413027 0 0 3124014 0.6 0.0 0.6 0
 8 6444 1 5413027 0 0 3124014 0.6 0.0 0.6 0
 9 6432 1 5413027 0 0 3124014 0.6 0.0 0.6 0
 10 3171 1 5413027 0 0 2208664 0.4 0.0 0.4 0
 11 4755 1 5413027 0 0 1713291 0.3 0.0 0.3 0
 12 13825 3 3877459 0 0 1707927 0.4 0.0 0.4 0
 13 7210 1 5413027 0 0 1498775 0.3 0.0 0.3 0
 14 13948 1 1059847 582 0 1481278 1.4 5.0 1.4 0
 15 15513 1 5413027 0 0 1471194 0.3 0.0 0.3 0
 16 2511 1 5413027 0 0 1468578 0.3 0.0 0.3 0
 17 2657 1 187692 0 0 1102051 5.9 0.0 5.2 0
 18 2659 1 187692 0 0 1102051 5.9 0.0 5.2 0
 19 2658 1 187692 0 0 1039742 5.5 0.0 4.9 0
 20 2656 1 187692 0 0 1039721 5.5 0.0 4.9 0
 21 15327 3 1059847 0 0 961025 0.9 0.0 0.9 0
 22 2256 1 821156 0 0 805927 1.0 0.0 1.0 0
 23 3059 1 187692 30 0 759668 4.0 4240.2 3.4 0
 24 15462 3 11451 0 0 741080 64.7 0.0 64.7 0
 25 2661 1 127225 38464 0 605107 4.8 9.5 2.7 0
 26 13924 1 29533 0 0 205625 7.0 0.0 7.0 0
 27 14782 3 73708 0 0 120335 1.6 0.0 1.6 0
 28 13980 3 18401 0 0 109200 5.9 0.0 5.9 0
 29 15262 1 19742 0 0 76854 3.9 0.0 3.9 0
 30 14657 3 17408 0 0 57491 3.3 0.0 3.3 0
 31 14656 3 17408 0 0 57334 3.3 0.0 3.3 0
 32 14019 1 12804 0 0 44618 3.5 0.0 3.5 0
 33 14020 1 12804 0 0 44603 3.5 0.0 3.5 0
 34 15481 1 10609 0 0 40880 3.9 0.0 3.9 0
 35 463 1 73993 0 0 39854 0.5 0.0 0.5 0
 36 13465 1 10745 0 0 34344 3.2 0.0 3.2 0
 37 13584 1 10745 0 0 32027 3.0 0.0 3.0 0
 38 15294 1 10745 0 0 31114 2.9 0.0 2.9 0
 39 224 1 73993 0 0 25916 0.4 0.0 0.4 0
 40 228 1 73993 0 0 23204 0.3 0.0 0.3 0
 41 251 1 73993 0 0 21328 0.3 0.0 0.3 0
 42 5901 1 20358 0 0 18947 0.9 0.0 0.9 0
 43 221 1 33000 0 0 18701 0.6 0.0 0.6 0
 44 5800 1 20358 0 0 17945 0.9 0.0 0.9 0
 45 13516 1 5820 0 0 13804 2.4 0.0 2.4 0
 46 6409 1 10320 0 0 13570 1.3 0.0 1.3 0
 47 6411 1 10320 0 0 11120 1.1 0.0 1.1 0
 48 15386 3 2725 0 0 10486 3.8 0.0 3.8 0
 49 6410 1 10320 0 0 10049 1.0 0.0 1.0 0
 50 2278 1 440 0 0 9367 21.3 0.0 21.3 0
 51 3084 1 1622 0 0 6714 4.1 0.0 4.1 0
 52 7041 1 8787 0 0 6407 0.7 0.0 0.7 0
 53 15683 3 196 0 0 6184 31.6 0.0 31.6 0
 54 15149 3 3430 0 0 4591 1.3 0.0 1.3 0
 55 15574 1 300 0 0 3959 13.2 0.0 13.2 0
 56 15471 1 310 0 0 2822 9.1 0.0 9.1 0
 57 1618 1 310 0 0 2574 8.3 0.0 8.3 0
 58 3466 1 264 0 0 2499 9.5 0.0 9.5 0
 59 2183 1 872 0 0 2107 2.4 0.0 2.4 0
 60 12489 1 1665 0 0 2102 1.3 0.0 1.3 0
 61 9027 1 1665 0 0 2102 1.3 0.0 1.3 0
 62 9769 1 1665 0 0 1983 1.2 0.0 1.2 0
 63 3461 1 136 0 0 1939 14.3 0.0 14.3 0
 64 2597 1 132 0 0 1911 14.5 0.0 14.5 0

Page 12 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

As with preprocessor profiling, many of the columns2 are significant, the number of checks,
microseconds, average per check (overall, match and non match), and the number of matches.
Expensive rules are pretty easily identified with this data, usually by looking at the top 10 or 20 rules
with high values in those columns. In particular, rules with an order of magnitude difference compared
to others should jump out. The above table is sorted by microseconds, and the first 20 rules are an
order of magnitude higher than the next group.

 A high value for microseconds for a given rule indicates that rule is costly. Comparing the
total microseconds for a rule against the total microseconds for all of Snort provides an
estimate of how much Snort’s processing time per packet is spent on that rule. Because of
the way rules are evaluated since Snort 2.8.2 – rule options from similar rules are evaluated
once – the total number of microseconds for all rules will likely be more than the total
processing time for all of Snort. A rule that has a ratio of greater than 5% of the total time
should be evaluated to see if it can be altered to perform better and/or turned off for the
given configuration. That is especially true if there are no matches or alerts – matches
sometimes don’t result in alerts because of a flowbit:noalert option.

 Looking at the total microseconds per rule relative to the number of checks and average per
check will help identify how the rule may be altered. A large number of checks means that
the content, if present, used for the fast pattern matcher is not significantly unique relative
to the data being seen on the network. If there is no content, depending on the
ports/services for the rule, it may be evaluated on every packet.
A high average per check indicates a rule that has rule options that are expensive to
evaluate, most often because of PCRE rule options with complex expressions. Breaking the
rule up into multiple rules by reducing the complexity or eliminating the PCRE will reduce
the evaluation time. For example, if a PCRE contains 3 “or’d patterns”, use regular content
options.

 The impact of PCRE can be limited by the config options pcre_match_limit and
pcre_match_limit_recursion.

 The number of checks not only identifies rules that are being evaluated frequently, but
when used in comparison to other rules, can be used to update the rules themselves. In the
above example data is that a number of rules all have the same number of checks, implying
that they use a common content option. If there are other, possibly more unique, contents
with those rules, the fastpattern option could be added to the most unique content for
each of those rules which will reduce the number of evaluations.
A rule that is being evaluated frequently but never matching will result in a high average
per non-match. These rules should be investigated for both accuracy and whether or not
they need to be used at all.

2 The disabled column is only present if the PPM feature is enabled.

Page 13 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Checklist/Quick Reference
Below is a checklist for using the preprocessor profiling statistics.

Preprocessor
Profiling Statistic

Issue Recommended Changes/Remedies

Checks High relative
to others

 Eliminate traffic from inspection via ignore_ports.

 Proper configuration of preprocessor ports and use target-
based feature.

 Proper configuration SSL, SSH, FTP/Telnet to ignore
traffic.

 Use a BPF to pre-filter traffic from Snort.

Microsecs, Avg
per Check

High relative
to others

 Proper configuration of preprocessor ports and use target-
based feature.

 Correct configuration of TCP reassembly ports.

Detect, mpse High (>50%
total)

 Eliminate unnecessary rules, see below.
 Use faster pattern matcher algorithm (AC).

PCRE, Avg per
Check

High, Large
% of Total

 Use config pcre_match_limit and config
pcre_match_limit_recursion

Below is a checklist for using the rule profiling statistics.

Rule Profiling
Statistic

Issue Recommended Changes/Remedies

Microsecs > 5%
Preprocessor
Profiling
“total” time

 Turn off rule if possible.
 Rewrite rule for better performance:
o Use a content option (or identify most unique content

with fastpattern option).

o Correct source & destination ports and/or service
metadata.

Matches and/or
Alerts

Low Values Possible no alerts with high matches because of
flowbits:noalert. Is flowbit necessary?

 Turn off rule if possible.

Avg per Check High Value Identify expensive PCRE, possibly split rule.
 Ensure there is content.
 In conjunction with preprocessor profiling, identify

Page 14 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

expensive rule options. Update rule to be more efficient.

Checks Same as
other rules

 See if content options in these rules are the same. Use
more unique content in different rules to differentiate them.

Page 15 of 15 ©Sourcefire, Inc. All rights reserved. | October 2009

Change Log
Date Author(s) Summary of Changes
Aug 12, 2009 Sturges Initial draft

Aug 17, 2009 Sturges Added checklists, correct minor spelling errors.

Aug 19, 2009 Sturges Updated TCP Timeout info, added section on perfmon flow stats

Oct 28, 2009 Sturges Updated formatting

