Installing Snort 3 Alpha 4 on openSUSE Leap 42.3 64 bits

Boris A. Gomez
Universidad Tecnologica de Panama
November 2017

About This Guide
This guide has been tested on openSUSE Leap 42.3 64 bits, using DAQ 2.2.2 for Snort 3 and Snort 3
Alpha 4.

Snort 3 is still in the early testing phase (Alpha version) so it should not be installed on production
systems.

Our Snort 3 was installed in a virtual machine:
Virtual Machine Manager: VirtualBox 5.1.30
HOST operating system: Windows 10, 64 bits
GUEST operating system: openSUSE Leap 42.3

This guide is based on “Installing Snort++ in Ubuntu (Version 3.0 Alpha 4 build 240)” by Noah
Dietrich.

VirtualBox - Network Configuration
Configure the network section of the guest machine to the bridge mode:

{23 openSUSE 42.3 Leap - Settings ? >
@I General Hetwork

2yl System Adapter 1 Adapter 2 Adapter 3 Adapter 4

Display Enable Metwork Adapter

@ Storage Attached to: |Bridged Adapter

) Mame: |Realtek PCle GBE Family Controller =
& Audio
(> advanced
@ Metwork
@ Serial Ports

Guest Machine
Run the guest machine and set its network interface card to a static IP, for example 192.168.99.10.

then check settings:

sudo ifconfig

ethl Link encap:Ethernet HWaddr 08:00:27:04:F6:F0
inet addr: 192.168.99.10 Bcast:192.168.99.255 Mask:255.255.255.0

Verify that you can access internet by accessing any web page, for example: https://snort.org

Required Packages

Use YAST to install the following packages:

cmake 3.5.2 for managing the build process

gcc-c++ 4.8, libgee_s1 7.1.1, libgec_s1-32bit 7.1.1 the system GNU C++ Compiler and libraries

libdnet1 1.12, libdnet-devel 1.12 (faltaban) for network utility functions

hwloc 1.10.1, hwloc-devel 1.10.1 provides portable abstraction across platforms

lua51-luajit 2.0.4, lua51-luajit-devel 2.0.4 Just-In-Time Compiler for Lua language

openssl 1.0.2j, libopenssl-devel 1.0.2j toolkit for Transport Layer Security (TLS)
and Secure Sockets Layer (SSL) protocols

libpcap1 1.8.1, libpcap-devel 1.8.1 portable C/C++ library for network traffic

capture

libpcrel 8.39, pcre-devel 8.39 and libpcre1-32bit 8.39 set of functions that implements regular
expression pattern matching

pkg-config 0.28 used to retrieve information about installed
libraries in the system

php7-zlib 7.0.7, zlib-devel 1.2.8 for decompression

flex 2.5.37 DAQ pre-requisite

bison 2.7 DAQ pre-requisite

tree 1.7.0 to produce an indented list of files within a
directory

Software Download
cd ~/Downloads

wget -c https://www.snort.org/downloads/snortplus/dag-2.2.2.tar.gz
wget -c https://snort.org/downloads/snortplus/snort-3.0.0-239-cmake.tar.gz
wget -c https://www.snort.org/downloads/openappid/6329 -O OpenAppld-6329

Snort3 rules have more options than Snort 2 rules, and while the normal rules downloaded with
PulledPork or manually will work, for testing you will probably want to download the set of
community rules specifically created for Snort 3. You can manually download Snort 3 specific
community rules from the snort website:

wget -c https://www.snort.org/downloads/community/snort3-community-rules.tar.gz

Install DAQ
Data AcQuisition library (DAQ) for Snort 3 is a different DAQ than for the 2.9.9.x series of Snort.

Open a Konsole terminal and switch to root:

su

Password:

enter root password.

cd /usr/local/src
tar -xzf /home/<user>/Downloads/dag-2.2.2.tar.gz

where <user> is your user name.

cd dag-2.2.2
./configure

pcl6:/usr/local/src/dag-2.2.2 # ./configure

configure: loading site script /usr/share/site/x86_64-unknown-linux-gnu
checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

Build AFPacket DAQ module.. : yes
Build Dump DAQ module...... : yes
Build IPFW DAQ module...... :yes
Build IPQ DAQ module....... 1 1no
Build NFQ DAQ module....... 1 no
Build PCAP DAQ module...... :yes
Build netmap DAQ module.... : no

If result is different, check the config.log file:

tail /usr/local/src/dag-2.2.2/config.log

#define HAVE_SOCKET 1
#define HAVE_STRCHR 1
#define HAVE_STRCSPN 1
#define HAVE_STRDUP 1
#define HAVE_STRERROR 1
#define HAVE_STRRCHR 1
#define HAVE_STRSTR 1
#define HAVE_STRTOUL 1

configure: exit 0
pcl6:/usr/local/src/dag-2.2.2 #

Some errors may show up in the log but, in general, the final line = exit 0, indicates that the
configuration went well.

make

pcl6:/usr/local/src/dag-2.2.2 # make

make all-recursive

make[1]: Entering directory '/usr/local/src/dag-2.2.2'
Making all in api

make[2]: Entering directory '/usr/local/src/dag-2.2.2/api'

/bin/sh ../libtool --tag=CC --mode=compile gcc -DHAVE_CONFIG_H -I. -I.. -I/usr/include -Wall
-Wwrite-strings -Wsign-compare -Wcast-align -Wextra -Wformat -Wformat-security -Wno-unused-
parameter -fno-strict-aliasing -fdiagnostics-show-option --pedantic -std=c99 -D_GNU_SOURCE -g
-O2 -fvisibility=hidden -MT daq_base.lo -MD -MP -MF .deps/daq_base.Tpo -c -o daq_base.lo
daq_base.c

make[2]: Leaving directory '/usr/local/src/dag-2.2.2/0s-dag-modules'
make[2]: Entering directory '/usr/local/src/dag-2.2.2'

make[2]: Leaving directory '/usr/local/src/dag-2.2.2'

make[1]: Leaving directory '/usr/local/src/dag-2.2.2'
pcl6:/usr/local/src/dag-2.2.2 #

make install

pcl6:/usr/local/src/dag-2.2.2 # make install

Making install in api

make[1]: Entering directory '/usr/local/src/dag-2.2.2/api'
make[2]: Entering directory '/usr/local/src/daqg-2.2.2/api’
/usr/bin/mkdir -p '/usr/local/lib64'

make[2]: Nothing to be done for 'install-data-am'.

make[2]: Leaving directory '/usr/local/src/dag-2.2.2/0s-dag-modules'
make[1]: Leaving directory '/usr/local/src/dag-2.2.2/0s-dag-modules'
make[1]: Entering directory '/usr/local/src/dag-2.2.2'

make[2]: Entering directory '/usr/local/src/dag-2.2.2'

make[2]: Nothing to be done for 'install-exec-am'.

make[2]: Nothing to be done for 'install-data-am'.

make[2]: Leaving directory '/usr/local/src/dag-2.2.2'

make[1]: Leaving directory '/usr/local/src/dag-2.2.2'
pcl6:/usr/local/src/dag-2.2.2 #

Run “ldconfig —v” to create the necessary links and cache to the most recent shared libraries found:

ldconfig -v

libzvbi-chains.s0.0 -> libzvbi-chains.s0.0.0.0

libplds4.so -> libplds4.so

libplc4.so -> libplc4.so

libnspr4.so -> libnspr4.so
pcl6:/usr/local/src/dag-2.2.2 #

Install Snort

Use cmake with DCMAKE_INSTALL_PREFIX option to install the entire Snort structure to
/usr/local:

cd /usr/local/src

tar -xzf /home/<user>/Downloads/snort-3.0.0-239-cmake.tar.gz
cd snort-3.0.0-a4

cmake -DCMAKE_INSTALL_PREFIX=/usr/local

pcl6:/usr/local/src/snort-3.0.0-a4 # cmake -DCMAKE_INSTALL_PREFIX=/usr/local
-- The CXX compiler identification is GNU 4.8.5

-- The C compiler identification is GNU 4.8.5

-- Check for working CXX compiler: /usr/bin/c++

-- Performing Test RESTRICT - Success

-- Looking for Izma_code in /usr/lib64/liblzma.so

-- Looking for 1zma_code in /usr/lib64/liblzma.so - found

-- Configuring done

-- Generating done

-- Build files have been written to: /usr/local/src/snort-3.0.0-a4
pcl6:/usr/local/src/snort-3.0.0-a4 #

make clean

<no messages>

make

pcl6:/usr/local/src/snort-3.0.0-a4 # make

Scanning dependencies of target tcp_connector

[0%] Building CXX object
src/connectors/tcp_connector/CMakeFiles/tcp_connector.dir/tcp_connector.cc.o

[0%] Building CXX object
src/connectors/tcp_connector/CMakeFiles/tcp_connector.dir/tcp_connector_module.cc.o
[0%] Linking CXX static library libtcp_connector.a

[0%] Built target tcp_connector

Scanning dependencies of target daq_hext

[100%] Building C object dags/CMakeFiles/daq_hext.dir/daq_hext.c.o
[100%] Linking C shared module dag_hext.so

[100%] Built target daq_hext

Scanning dependencies of target daq_file

[100%] Building C object dags/CMakeFiles/daq_file.dir/daqg_file.c.o
[100%] Linking C shared module daq_file.so

[100%] Built target daq_file

pcl6:/usr/local/src/snort-3.0.0-a4 #

make install

pcl6:/usr/local/src/snort-3.0.0-a4 # make install
[0%] Built target tcp_connector

[0%] Built target ips_actions

[1%] Built target codec_module

[2%] Built target search_engines

-- Installing: /usr/local/lib/snort/dags/daqg_{file.so

-- Installing: /usr/local/lib/snort/dags/daq_hext.so

-- Installing: /usr/local/include/snort/dags/daq_user.h
pcl6:/usr/local/src/snort-3.0.0-a4 #

Snort 3 requires a few environmental variables, we store them temporarily in the current session so we
can continue working, and save them permanently to the ~/.bashrc file:

export LUA_PATH=/usr/local/include/snort/lua/\?.lua\;\;
export SNORT_LUA_PATH=/usr/local/etc/snort

sh -c "echo 'export LUA_PATH=/usr/local/include/snort/lua/\?.lua\;\;' >> ~/.bashrc"
sh -c "echo 'export SNORT_LUA_PATH=/usr/local/etc/snort' >> ~/.bashrc"

The last step of our Snort installation is to test that the Snort Binary runs. Execute Snort with the -V
flag, which causes Snort to print the current version:

snort -V

You should see output similar to the following:

pcl6:/usr/local/src/snort-3.0.0-a4 # snort -V

e —¥> Snort++ <*-
0")~ Version 3.0.0-a4 (Build 239) x86_64
" By Martin Roesch & The Snort Team
http://snort.org/contact#team
Copyright (C) 2014-2017 Cisco and/or its affiliates. All rights reserved.
Copyright (C) 1998-2013 Sourcefire, Inc., et al.
Using DAQ version 2.2.2
Using libpcap version 1.8.1
Using LuaJIT version 2.0.4
Using PCRE version 8.39 2016-06-14
Using ZLIB version 1.2.8
Using LZMA version 5.2.2
Using OpenSSL 1.0.2j-fips 26 Sep 2016

pcl6:/usr/local/src/snort-3.0.0-a4 #

A note on install locations:
When you install snort in /usr/lecal, you get the following folder structure:

tree /usr/local -L 3
pcl6:/usr/local/src/snort-3.0.0-a4 # tree /usr/local -L 3
/usr/local
— bin
— dag-modules-config
‘ — snort
‘ — snort2lua
| — u2boat
L— u2spewfoo

t
‘ L— snort
| — file_magic.lua
— snort_defaults.Tua
‘ L— snort.lua
— games
— 1include
F— dag_api.h
dag_common.h
dag.h
stbhpf_dit.h
stbpf.h
snort
‘ — actions
| — codecs

— dags
decompress
detection
events
file_api
flow
framework
hash
log
Tua
main
managers
mime
packet_io
profiler
protocols
search_engines
sfip
stream
time
utils

)
(@]

[TTTT

TTTTTTI

TTTTTTT

|
— Tib

‘ — pkgconfig

| | L— snort.pc

L— snort

— dags

— snort.cmake

| L— snort-noconfig.cmake
F— Tib64

[TTT]

[TTTTTTTTTTTTT

.

=]
[}
S

TTTTTTTTT

=17

0
@]

T

daqg

dag_afpacket.la
dag_afpacket.so
dag_dump.la

dag_dump.so

dag_ipfw.la

dag_ipfw.so

dag_pcap.la

L— dag_pcap.so

Tibdag.a

Tibdag.Ta

Tibdaq.so -> Tibdaq.so0.4.0.2
Tibdaq.so0.4 -> 1libdaq.so0.4.0.2
Tibdaq.s0.4.0.2
Tibdag_static.a
Tibdag_static.Ta
Tibdag_static_modules.a
Tibdag_static_modules.la
Tibsfbpf.a

Tibsfbpf.1a

Tibsfbpf.so -> 1ibsfbpf.so0.0.0.
Tibsfbpf.so.0 -> 1ibsfbpf.so.0.
Tibsfbpf.s0.0.0.1

[TTTTT]

manl
man2
man3
man4
man5
man6
man7
man8
man9
L— mann
sbin
share
L— doc

L— snort
r
dag-2.2.2
— aclocal.m4
api
ChangelLog
compile
config.guess
config.h
config.h.in
config.log
config.status
config.sub
configure
configure.ac
COPYING
daq.dsp
depcomp
install-sh
Tibtool
Ttmain.sh
m4
Makefile

T

[TTTTTTTTTTTTTTTTT

1
0.1

MakefiTle.am

Makefile.1in

missing

os-dag-modules

README

stbpf

stamp-hl

L— snort-3.0.0-a4

ChangelLog

cmake

CMakeCache. txt
CMakeFiles
cmake_install.cmake
CMakeLists.txt
cmake_uninstall.cmake
cmake_uninstall.cmake.in
config.cmake.h.1in
config.h

config.h.in
config.h.in~

configure
configure_cmake. sh
COPYING
Cpackconfig.cmake
CPackSourcecConfig.cmake
cppcheck.out

crusty.cfg

cxx1ll_auto
cxx11l_auto_fail_compile
cxx1ll_auto_ret_type
cxx1l_cTlass_override_final
cxx1l_constexpr
cxx1ll_cstdint
cxx11l_decltype

cxx11l__ func__
cxx1l_initializer_list
cxx11_Tong_long
cxx11_nullptr
cxx11_nullptr_fail_compile
cxx1l1l_rvalue-references
cxx1ll_sizeof_member
cxx1ll_sizeof_member_fail
cxx1ll_static_assert
cxx1ll_static_assert_fail_compile
dags

doc
install_manifest.txt
LICENSE

Tua

Makefile

Makefile.in

piglet

README . md

short.pc

snort.pc.in

src

test-driver -> /usr/share/automake-1.13/test-driver
tools

[TTTTTT

CTTTTTTTT T e e e e e Tt rrTTTT

82 directories, 86 files

pcl6:/usr/local/src/snort-3.0.0-a4 #

Install rules

cd /usr/local/src

tar -xzf /home/<user>/Downloads/snort3-community-rules.tar.gz
cd snort3-community-rules

mkdir /usr/local/etc/snort/rules

cp snort3-community.rules /usr/local/etc/snort/rules

cp sid-msg.map /usr/local/etc/snort/rules

Now test that snort can load these rules:
snort -c /usr/local/etc/snort/snort.lua -R /usr/local/etc/snort/rules/snort3-community.rules

your output should contain something similar to:

Loading rules:
Loading /usr/local/etc/snort/rules/snort3-community.rules:
Finished /usr/local/etc/snort/rules/snort3-community.rules.
Finished rules.

rule counts
total rules loaded: 3462
text rules: 3462
option chains: 3462
chain headers: 264

you may want to run Snort with the following flags to detect issues: the warn-all and pedantic flags.
From the Snort3 manual:

Warnings are not emitted unless —warn-* is specified. —warn-all enables all warnings, and —pedantic
makes such warnings fatal.

Installing OpenAppID

OpenAppID allows for the identification of application layer traffic. The Snort team has put together a
package of detectors, with assistance from the community that you can download and install, called the
Application Detector Package which needs to be installed:

cd /usr/local/src
tar -xzf /home/<user>/Downloads/OpenAppld-6329

It creates a directory called "odp"
cp -R odp /usr/local/lib

Now we need to edit our snort configuration file to point to this odp directory:
vi /usr/local/etc/snort/snort.lua

Note: snort.lua is equivalent to snort.conf in Snort 2.

At line 74 (yours line number may be slightly different) you will see the appid = entry. You will want
to add the app detector dir option here, pointing to the parent folder of the odp folder. It should look
like this:

‘appid = { app_detector_dir = '/usr/local/lib' }

Now we want to test that the configuration file loads correctly:
snort -c /usr/local/etc/snort/snort.lua --warn-all

you should see output similar to:

Finished /usr/local/etc/snort/snort.lua.

pcap DAQ configured to passive.

Snort successfully validated the configuration.
0")~ Snort exiting

Note: there will be some warnings in this and following tests. You can ignore them if Snort validates
the configuration.

Now to load Snort with the OpenAppID detectors, as well as all rules:

snort -c /usr/local/etc/snort/snort.lua -R /usr/local/etc/snort/rules/snort3-community.rules --warn-all

pcap DAQ configured to passive.

Snort successfully validated the configuration.
0")~ Snort exiting

Create a simple rule to test that OpenAppID is working correctly:
touch /usr/local/etc/snort/rules/local.rules
vi /usr/local/etc/snort/rules/local.rules

with the following content:

‘alert tcp any any -> any any (msg:"Facebook trafic Seen"; appids:"Facebook";sid:10000001;)

Test to make sure the rule loads correctly:

snort -c /usr/local/etc/snort/snort.lua -R /usr/local/etc/snort/rules/local.rules --warn-all

pcap DAQ configured to passive.

Snort successfully validated the configuration.
0")~ Snort exiting

You should see one rule loaded successfully. Now let’s run snort in detection mode on an interface
(change eth1 below to match your interface name), printing alerts to the console:

snort -c /usr/local/etc/snort/snort.lua -R /usr/local/etc/snort/rules/local.rules -i eth1 -A alert_fast -k none

the -k none flag tells Snort to ignore bad checksums. the Stream and Frag decoders will drop packets
that have bad checksums, and the packets will not get processed by the OpenAppID detectors. By
including this flag, we ensure that a packet with a bad checksum still gets processed.

you should see output similar to:

Applnfo: Appld 418 has no entry in application info table
ApplInfo: Appld 418 has no entry in application info table
AppInfo: Appld 439 has no entry in application info table

and the system will stay in this state until a new event happens.

Now from another window on that computer (open a new Konsole terminal), check that Snort is
running:

ps aux | grep snort

root 5081 2.2 40.3 420556 255896 pts/0 Sl+ 16:51 0:01 snort -c /usr/local/etc/snort/snort.lua
-R /usr/local/etc/snort/rules/local.rules -i ethl -A alert_fast -k none

root 5120 0.0 0.2 10540 1596 pts/3 S+ 16:52 0:00 grep --color=auto snort

Now use wget to connect to facebook:
wget facebook.com

in the first console window you will see alert outputs similar to the following:

11/09-07:34:51.009665 [**] [1:10000001:0] "Facebook trafic Seen" [**] [Priority: 0] [AppID:
Facebook] {TCP} 192.168.99.10:58892 -> 31.13.67.35:80
11/09-07:34:51.059716 [**] [1:10000001:0] "Facebook trafic Seen" [**] [Priority: 0] [AppID:
Facebook] {TCP} 31.13.67.35:80 -> 192.168.99.10:58892

use ctrl-c to stop Snort.

Note: if you are collecting packets with a larger MTU that the standard MTU for your adapter (VLAN
tagged packets, MPLS Packets, packets from a different network type with a larger MTU), you may
need to use the —snaplen flag to adjust snort to process larger packets).

	A note on install locations:
	Installing OpenAppID

