
SNORT R© Users Manual

2.9.16

The Snort Project

April 8, 2020

Copyright c©1998-2003 Martin Roesch

Copyright c©2001-2003 Chris Green

Copyright c©2003-2013 Sourcefire, Inc.

Copyright c©2014-2020 Cisco and/or its affiliates. All rights reserved.

1

Contents

1 Snort Overview 9

1.1 Getting Started . 9

1.2 Sniffer Mode . 9

1.3 Packet Logger Mode . 10

1.4 Network Intrusion Detection System Mode . 11

1.4.1 NIDS Mode Output Options . 11

1.4.2 Understanding Standard Alert Output . 12

1.4.3 High Performance Configuration . 12

1.4.4 Changing Alert Order . 13

1.5 Packet Acquisition . 13

1.5.1 Configuration . 13

1.5.2 pcap . 14

1.5.3 AFPACKET . 15

1.5.4 NFQ . 15

1.5.5 IPQ . 16

1.5.6 IPFW . 16

1.5.7 Dump . 16

1.5.8 Statistics Changes . 17

1.6 Reading pcap files . 17

1.6.1 Command line arguments . 17

1.6.2 Examples . 17

1.7 Basic Output . 19

1.7.1 Timing Statistics . 19

1.7.2 Packet I/O Totals . 19

1.7.3 Protocol Statistics . 20

1.7.4 Snort Memory Statistics . 21

1.7.5 Actions, Limits, and Verdicts . 21

1.8 Tunneling Protocol Support . 22

1.8.1 Multiple Encapsulations . 23

1.8.2 Logging . 23

2

1.9 Miscellaneous . 23

1.9.1 Running Snort as a Daemon . 23

1.9.2 Running in Rule Stub Creation Mode . 24

1.9.3 Obfuscating IP Address Printouts . 24

1.9.4 Specifying Multiple-Instance Identifiers . 24

1.9.5 Snort Modes . 25

1.10 Control socket . 26

1.11 Configure signal value . 26

1.12 More Information . 27

2 Configuring Snort 28

2.1 Includes . 28

2.1.1 Format . 28

2.1.2 Variables . 28

2.1.3 Config . 31

2.2 Preprocessors . 40

2.2.1 Frag3 . 40

2.2.2 Session . 43

2.2.3 Stream . 45

2.2.4 sfPortscan . 49

2.2.5 RPC Decode . 55

2.2.6 Performance Monitor . 55

2.2.7 HTTP Inspect . 60

2.2.8 SMTP Preprocessor . 76

2.2.9 POP Preprocessor . 81

2.2.10 IMAP Preprocessor . 83

2.2.11 FTP/Telnet Preprocessor . 85

2.2.12 SSH . 92

2.2.13 DNS . 93

2.2.14 SSL/TLS . 94

2.2.15 ARP Spoof Preprocessor . 96

2.2.16 DCE/RPC 2 Preprocessor . 96

2.2.17 Sensitive Data Preprocessor . 112

2.2.18 Normalizer . 114

2.2.19 SIP Preprocessor . 117

2.2.20 Reputation Preprocessor . 123

2.2.21 GTP Decoder and Preprocessor . 127

2.2.22 Modbus Preprocessor . 135

2.2.23 DNP3 Preprocessor . 138

3

2.2.24 AppId Preprocessor . 141

2.3 Decoder and Preprocessor Rules . 145

2.3.1 Configuring . 145

2.3.2 Reverting to original behavior . 146

2.4 Event Processing . 146

2.4.1 Rate Filtering . 147

2.4.2 Event Filtering . 149

2.4.3 Event Suppression . 151

2.4.4 Event Logging . 152

2.4.5 Event Trace . 153

2.5 Performance Profiling . 153

2.5.1 Rule Profiling . 154

2.5.2 Preprocessor Profiling . 155

2.5.3 Packet Performance Monitoring (PPM) . 158

2.6 Output Modules . 161

2.6.1 alert syslog . 161

2.6.2 alert fast . 163

2.6.3 alert full . 163

2.6.4 alert unixsock . 164

2.6.5 log tcpdump . 164

2.6.6 csv . 164

2.6.7 unified 2 . 166

2.6.8 log null . 168

2.6.9 Log Limits . 169

2.7 Host Attribute Table . 169

2.7.1 Rule evaluation . 169

2.7.2 Snort Configuration . 169

2.7.3 Host Attribute Table File Format . 169

2.7.4 Attribute Table Example . 171

2.7.5 Attribute Table Affect on preprocessors . 172

2.8 Dynamic Modules . 173

2.8.1 Format . 173

2.8.2 Directives . 173

2.9 Reloading a Snort Configuration . 174

2.9.1 Enabling support . 174

2.9.2 Reloading a configuration . 174

2.9.3 Non-reloadable configuration options . 174

2.10 Multiple Configurations . 176

2.10.1 Creating Multiple Configurations . 176

4

2.10.2 Configuration Specific Elements . 177

2.10.3 How Configuration is applied? . 178

2.11 Active Response . 178

2.11.1 Enabling Active Response . 179

2.11.2 Configure Sniping . 179

2.11.3 Flexresp . 179

2.11.4 React . 180

2.11.5 Rule Actions . 181

3 Writing Snort Rules 182

3.1 The Basics . 182

3.2 Rules Headers . 182

3.2.1 Rule Actions . 182

3.2.2 Protocols . 183

3.2.3 IP Addresses . 183

3.2.4 Port Numbers . 184

3.2.5 The Direction Operator . 184

3.2.6 Activate/Dynamic Rules . 185

3.3 Rule Options . 185

3.4 General Rule Options . 185

3.4.1 msg . 185

3.4.2 reference . 185

3.4.3 gid . 186

3.4.4 sid . 187

3.4.5 rev . 187

3.4.6 classtype . 187

3.4.7 priority . 189

3.4.8 metadata . 189

3.4.9 General Rule Quick Reference . 190

3.5 Payload Detection Rule Options . 190

3.5.1 content . 190

3.5.2 protected content . 191

3.5.3 hash . 192

3.5.4 length . 193

3.5.5 nocase . 193

3.5.6 rawbytes . 193

3.5.7 depth . 193

3.5.8 offset . 194

3.5.9 distance . 194

5

3.5.10 within . 195

3.5.11 http client body . 195

3.5.12 http cookie . 196

3.5.13 http raw cookie . 196

3.5.14 http header . 197

3.5.15 http raw header . 197

3.5.16 http method . 198

3.5.17 http uri . 198

3.5.18 http raw uri . 198

3.5.19 http stat code . 199

3.5.20 http stat msg . 199

3.5.21 http encode . 200

3.5.22 fast pattern . 201

3.5.23 uricontent . 202

3.5.24 urilen . 203

3.5.25 isdataat . 204

3.5.26 pcre . 204

3.5.27 pkt data . 205

3.5.28 file data . 206

3.5.29 base64 decode . 207

3.5.30 base64 data . 208

3.5.31 byte test . 208

3.5.32 byte jump . 210

3.5.33 byte extract . 211

3.5.34 byte math . 213

3.5.35 ftpbounce . 215

3.5.36 asn1 . 215

3.5.37 cvs . 216

3.5.38 dce iface . 217

3.5.39 dce opnum . 217

3.5.40 dce stub data . 217

3.5.41 sip method . 217

3.5.42 sip stat code . 217

3.5.43 sip header . 217

3.5.44 sip body . 217

3.5.45 gtp type . 217

3.5.46 gtp info . 217

3.5.47 gtp version . 217

3.5.48 ssl version . 217

6

3.5.49 ssl state . 217

3.5.50 Payload Detection Quick Reference . 218

3.6 Non-Payload Detection Rule Options . 218

3.6.1 fragoffset . 218

3.6.2 ttl . 219

3.6.3 tos . 219

3.6.4 id . 220

3.6.5 ipopts . 220

3.6.6 fragbits . 221

3.6.7 dsize . 221

3.6.8 flags . 222

3.6.9 flow . 223

3.6.10 flowbits . 224

3.6.11 seq . 226

3.6.12 ack . 227

3.6.13 window . 227

3.6.14 itype . 227

3.6.15 icode . 228

3.6.16 icmp id . 228

3.6.17 icmp seq . 229

3.6.18 rpc . 229

3.6.19 ip proto . 229

3.6.20 sameip . 230

3.6.21 stream reassemble . 230

3.6.22 stream size . 230

3.6.23 Non-Payload Detection Quick Reference . 231

3.7 Post-Detection Rule Options . 232

3.7.1 logto . 232

3.7.2 session . 232

3.7.3 resp . 232

3.7.4 react . 233

3.7.5 tag . 233

3.7.6 replace . 234

3.7.7 detection filter . 234

3.7.8 Post-Detection Quick Reference . 235

3.8 Rule Thresholds . 235

3.9 Writing Good Rules . 236

3.9.1 Content Matching . 236

3.9.2 Catch the Vulnerability, Not the Exploit . 236

7

3.9.3 Catch the Oddities of the Protocol in the Rule . 237

3.9.4 Optimizing Rules . 237

3.9.5 Testing Numerical Values . 239

4 Dynamic Modules 242

4.1 Data Structures . 242

4.1.1 DynamicPluginMeta . 242

4.1.2 DynamicPreprocessorData . 242

4.1.3 DynamicEngineData . 243

4.1.4 SFSnortPacket . 243

4.1.5 Dynamic Rules . 244

4.2 Required Functions . 250

4.2.1 Preprocessors . 251

4.2.2 Detection Engine . 251

4.2.3 Rules . 253

4.3 Examples . 253

4.3.1 Preprocessor Example . 253

4.3.2 Rules . 255

5 Snort Development 258

5.1 Submitting Patches . 258

5.2 Snort Data Flow . 258

5.2.1 Preprocessors . 258

5.2.2 Detection Plugins . 259

5.2.3 Output Plugins . 259

5.3 Unified2 File Format . 259

5.3.1 Serial Unified2 Header . 259

5.3.2 Unified2 Packet . 260

5.3.3 Unified2 IDS Event . 260

5.3.4 Unified2 IDS Event IP6 . 260

5.3.5 Unified2 IDS Event (Version 2) . 261

5.3.6 Unified2 IDS Event IP6 (Version 2) . 261

5.3.7 Unified2 Extra Data . 262

5.3.8 Description of Fields . 262

5.4 Buffer dump utility . 264

5.4.1 Example Buffer Dump output . 265

5.5 The Snort Team . 266

8

Chapter 1

Snort Overview

This manual is based on Writing Snort Rules by Martin Roesch and further work from Chris Green <cmg@snort.org>.

It was then maintained by Brian Caswell <bmc@snort.org> and now is maintained by the Snort Team. If you have

a better way to say something or find that something in the documentation is outdated, drop us a line and we will

update it. If you would like to submit patches for this document, you can find the latest version of the documentation

in LATEX format in the most recent source tarball under /doc/snort_manual.tex. Small documentation updates are

the easiest way to help out the Snort Project.

1.1 Getting Started

Snort really isn’t very hard to use, but there are a lot of command line options to play with, and it’s not always obvious

which ones go together well. This file aims to make using Snort easier for new users.

Before we proceed, there are a few basic concepts you should understand about Snort. Snort can be configured to run

in three modes:

• Sniffer mode, which simply reads the packets off of the network and displays them for you in a continuous

stream on the console (screen).

• Packet Logger mode, which logs the packets to disk.

• Network Intrusion Detection System (NIDS) mode, which performs detection and analysis on network traffic.

This is the most complex and configurable mode.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to print out the TCP/IP packet headers to the screen (i.e. sniffer mode),

try this:

./snort -v

This command will run Snort and just show the IP and TCP/UDP/ICMP headers, nothing else. If you want to see the

application data in transit, try the following:

./snort -vd

This instructs Snort to display the packet data as well as the headers. If you want an even more descriptive display,

showing the data link layer headers, do this:

9

./snort -vde

As an aside, notice that the command line switches can be listed separately or in a combined form. The last command

could also be typed out as:

./snort -d -v -e

to produce the same result.

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want to record the packets to the disk, you need to specify a

logging directory and Snort will automatically know to go into packet logger mode:

./snort -dev -l ./log

Of course, this assumes you have a directory named log in the current directory. If you don’t, Snort will exit with

an error message. When Snort runs in this mode, it collects every packet it sees and places it in a directory hierarchy

based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -l switch, you may notice that Snort sometimes uses the address of the remote computer

as the directory in which it places packets and sometimes it uses the local host address. In order to log relative to the

home network, you need to tell Snort which network is the home network:

./snort -dev -l ./log -h 192.168.1.0/24

This rule tells Snort that you want to print out the data link and TCP/IP headers as well as application data into the

directory ./log, and you want to log the packets relative to the 192.168.1.0 class C network. All incoming packets

will be recorded into subdirectories of the log directory, with the directory names being based on the address of the

remote (non-192.168.1) host.

△!
NOTE

Note that if both the source and destination hosts are on the home network, they are logged to a directory

with a name based on the higher of the two port numbers or, in the case of a tie, the source address.

If you’re on a high speed network or you want to log the packets into a more compact form for later analysis, you

should consider logging in binary mode. Binary mode logs the packets in tcpdump format to a single binary file in the

logging directory:

./snort -l ./log -b

Note the command line changes here. We don’t need to specify a home network any longer because binary mode

logs everything into a single file, which eliminates the need to tell it how to format the output directory structure.

Additionally, you don’t need to run in verbose mode or specify the -d or -e switches because in binary mode the entire

packet is logged, not just sections of it. All you really need to do to place Snort into logger mode is to specify a logging

directory at the command line using the -l switch—the -b binary logging switch merely provides a modifier that tells

Snort to log the packets in something other than the default output format of plain ASCII text.

Once the packets have been logged to the binary file, you can read the packets back out of the file with any sniffer that

supports the tcpdump binary format (such as tcpdump or Ethereal). Snort can also read the packets back by using the

-r switch, which puts it into playback mode. Packets from any tcpdump formatted file can be processed through Snort

in any of its run modes. For example, if you wanted to run a binary log file through Snort in sniffer mode to dump the

packets to the screen, you can try something like this:

10

./snort -dv -r packet.log

You can manipulate the data in the file in a number of ways through Snort’s packet logging and intrusion detection

modes, as well as with the BPF interface that’s available from the command line. For example, if you only wanted to

see the ICMP packets from the log file, simply specify a BPF filter at the command line and Snort will only see the

ICMP packets in the file:

./snort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Snort and tcpdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) mode so that you don’t record every single packet sent down

the wire, try this:

./snort -dev -l ./log -h 192.168.1.0/24 -c snort.conf

where snort.conf is the name of your snort configuration file. This will apply the rules configured in the snort.conf

file to each packet to decide if an action based upon the rule type in the file should be taken. If you don’t specify an

output directory for the program, it will default to /var/log/snort.

One thing to note about the last command line is that if Snort is going to be used in a long term way as an IDS, the

-v switch should be left off the command line for the sake of speed. The screen is a slow place to write data to, and

packets can be dropped while writing to the display.

It’s also not necessary to record the data link headers for most applications, so you can usually omit the -e switch, too.

./snort -d -h 192.168.1.0/24 -l ./log -c snort.conf

This will configure Snort to run in its most basic NIDS form, logging packets that trigger rules specified in the

snort.conf in plain ASCII to disk using a hierarchical directory structure (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort in NIDS mode. The default logging and alerting mecha-

nisms are to log in decoded ASCII format and use full alerts. The full alert mechanism prints out the alert message in

addition to the full packet headers. There are several other alert output modes available at the command line, as well

as two logging facilities.

Alert modes are somewhat more complex. There are seven alert modes available at the command line: full, fast,

socket, syslog, console, cmg, and none. Six of these modes are accessed with the -A command line switch. These

options are:

Option Description

-A fast Fast alert mode. Writes the alert in a simple format with a timestamp, alert message, source and

destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will be used automatically if you do not specify

a mode.

-A unsock Sends alerts to a UNIX socket that another program can listen on.

-A none Turns off alerting.

-A console Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

11

Packets can be logged to their default decoded ASCII format or to a binary log file via the -b command line switch.

To disable packet logging altogether, use the -N command line switch.

For output modes available through the configuration file, see Section 2.6.

△!
NOTE

Command line logging options override any output options specified in the configuration file. This allows

debugging of configuration issues quickly via the command line.

To send alerts to syslog, use the -s switch. The default facilities for the syslog alerting mechanism are LOG AUTHPRIV

and LOG ALERT. If you want to configure other facilities for syslog output, use the output plugin directives in

snort.conf. See Section 2.6.1 for more details on configuring syslog output.

For example, use the following command line to log to default (decoded ASCII) facility and send alerts to syslog:

./snort -c snort.conf -l ./log -h 192.168.1.0/24 -s

As another example, use the following command line to log to the default facility in /var/log/snort and send alerts to a

fast alert file:

./snort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually look like the following:

[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user what component of Snort generated this alert. For a list of

GIDs, please read etc/generators in the Snort source. In this case, we know that this event came from the “decode”

(116) component of Snort.

The second number is the Snort ID (sometimes referred to as Signature ID). For a list of preprocessor SIDs, please see

etc/gen-msg.map. Rule-based SIDs are written directly into the rules with the sid option. In this case, 56 represents a

T/TCP event.

The third number is the revision ID. This number is primarily used when writing signatures, as each rendition of the

rule should increment this number with the rev option.

1.4.3 High Performance Configuration

If you want Snort to go fast (like keep up with a 1000 Mbps connection), you need to use unified2 logging and a

unified2 log reader such as barnyard2. This allows Snort to log alerts in a binary form as fast as possible while another

program performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsed, but still somewhat fast, try using binary logging with the “fast” output

mechanism.

This will log packets in tcpdump format and produce minimal alerts. For example:

./snort -b -A fast -c snort.conf

12

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packets may not be appropriate for all installations. The Pass rules

are applied first, then the Drop rules, then the Alert rules and finally, Log rules are applied.

△!
NOTE

Sometimes an errant pass rule could cause alerts to not show up, in which case you can change the default

ordering to allow Alert rules to be applied before Pass rules. For more information, please refer to the

--alert-before-pass option.

Several command line options are available to change the order in which rule actions are taken.

• --alert-before-pass option forces alert rules to take affect in favor of a pass rule.

• --treat-drop-as-alert causes drop and reject rules and any associated alerts to be logged as alerts, rather

then the normal action. This allows use of an inline policy with passive/IDS mode. The sdrop rules are not

loaded.

• --process-all-events option causes Snort to process every event associated with a packet, while taking the

actions based on the rules ordering. Without this option (default case), only the events for the first action based

on rules ordering are processed.

△!
NOTE

Pass rules are special cases here, in that the event processing is terminated when a pass rule is encountered,

regardless of the use of --process-all-events.

1.5 Packet Acquisition

Snort 2.9 introduces the DAQ, or Data Acquisition library, for packet I/O. The DAQ replaces direct calls to libpcap

functions with an abstraction layer that facilitates operation on a variety of hardware and software interfaces without

requiring changes to Snort. It is possible to select the DAQ type and mode when invoking Snort to perform pcap

readback or inline operation, etc.

△!
NOTE

Some network cards have features which can affect Snort. Two of these features are named ”Large Receive

Offload” (lro) and ”Generic Receive Offload” (gro). With these features enabled, the network card performs

packet reassembly before they’re processed by the kernel.

By default, Snort will truncate packets larger than the default snaplen of 1518 bytes. In addition, LRO and

GRO may cause issues with Stream target-based reassembly. We recommend that you turn off LRO and

GRO. On linux systems, you can run:

$ ethtool -K eth1 gro off

$ ethtool -K eth1 lro off

1.5.1 Configuration

Assuming that you did not disable static modules or change the default DAQ type, you can run Snort just as you always

did for file readback or sniffing an interface. However, you can select and configure the DAQ when Snort is invoked

as follows:

13

./snort \

[--daq <type>] \

[--daq-mode <mode>] \

[--daq-dir <dir>] \

[--daq-var <var>]

config daq: <type>

config daq_dir: <dir>

config daq_var: <var>

config daq_mode: <mode>

<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw

<mode> ::= read-file | passive | inline

<var> ::= arbitrary <name>=<value> passed to DAQ

<dir> ::= path where to look for DAQ module so’s

The DAQ type, mode, variable, and directory may be specified either via the command line or in the conf file. You

may include as many variables and directories as needed by repeating the arg / config. DAQ type may be specified at

most once in the conf and once on the command line; if configured in both places, the command line overrides the

conf.

If the mode is not set explicitly, -Q will force it to inline, and if that hasn’t been set, -r will force it to read-file, and

if that hasn’t been set, the mode defaults to passive. Also, -Q and –daq-mode inline are allowed, since there is no

conflict, but -Q and any other DAQ mode will cause a fatal error at start-up.

Note that if Snort finds multiple versions of a given library, the most recent version is selected. This applies to static

and dynamic versions of the same library.

./snort --daq-list[=<dir>]

./snort --daq-dir=<dir> --daq-list

The above commands search the specified directories for DAQ modules and print type, version, and attributes of each.

This feature is not available in the conf. Snort stops processing after parsing –daq-list so if you want to add one or more

directories add –daq-dir options before –daq-list on the command line. (Since the directory is optional to –daq-list,

you must use an = without spaces for this option.)

1.5.2 pcap

pcap is the default DAQ. if snort is run w/o any DAQ arguments, it will operate as it always did using this module.

These are equivalent:

./snort -i <device>

./snort -r <file>

./snort --daq pcap --daq-mode passive -i <device>

./snort --daq pcap --daq-mode read-file -r <file>

You can specify the buffer size pcap uses with:

./snort --daq pcap --daq-var buffer_size=<#bytes>

Note that the pcap DAQ does not count filtered packets.

14

1.5.3 AFPACKET

afpacket functions similar to the memory mapped pcap DAQ but no external library is required:

./snort --daq afpacket -i <device>

[--daq-var buffer_size_mb=<#MB>]

[--daq-var debug]

If you want to run afpacket in inline mode, you must set device to one or more interface pairs, where each member of

a pair is separated by a single colon and each pair is separated by a double colon like this:

eth0:eth1

or this:

eth0:eth1::eth2:eth3

By default, the afpacket DAQ allocates 128MB for packet memory. You can change this with:

--daq-var buffer_size_mb=<#MB>

Note that the total allocated is actually higher, here’s why. Assuming the default packet memory with a snaplen of

1518, the numbers break down like this:

1. The frame size is 1518 (snaplen) + the size of the AFPacket header (66 bytes) = 1584 bytes.

2. The number of frames is 128 MB / 1518 = 84733.

3. The smallest block size that can fit at least one frame is 4 KB = 4096 bytes @ 2 frames per block.

4. As a result, we need 84733 / 2 = 42366 blocks.

5. Actual memory allocated is 42366 * 4 KB = 165.5 MB.

1.5.4 NFQ

NFQ is the new and improved way to process iptables packets:

./snort --daq nfq \

[--daq-var device=<dev>] \

[--daq-var proto=<proto>] \

[--daq-var queue=<qid>] \

[--daq-var queue_len=<qlen>]

<dev> ::= ip | eth0, etc; default is IP injection

<proto> ::= ip4 | ip6 | ip*; default is ip4

<qid> ::= 0..65535; default is 0

<qlen> ::= 0..65535; default is 0

Notes on iptables can be found in the DAQ distro README.

15

1.5.5 IPQ

IPQ is the old way to process iptables packets. It replaces the inline version available in pre-2.9 versions built with

this:

./configure --enable-inline / -DGIDS

Start the IPQ DAQ as follows:

./snort --daq ipq \

[--daq-var device=<dev>] \

[--daq-var proto=<proto>] \

<dev> ::= ip | eth0, etc; default is IP injection

<proto> ::= ip4 | ip6; default is ip4

1.5.6 IPFW

IPFW is available for BSD systems. It replaces the inline version available in pre-2.9 versions built with this:

./configure --enable-ipfw / -DGIDS -DIPFW

This command line argument is no longer supported:

./snort -J <port#>

Instead, start Snort like this:

./snort --daq ipfw [--daq-var port=<port>]

<port> ::= 1..65535; default is 8000

* IPFW only supports ip4 traffic.

1.5.7 Dump

The dump DAQ allows you to test the various inline mode features available in 2.9 Snort like injection and normaliza-

tion.

./snort -i <device> --daq dump

./snort -r <pcap> --daq dump

By default a file named inline-out.pcap will be created containing all packets that passed through or were generated

by snort. You can optionally specify a different name.

./snort --daq dump --daq-var file=<name>

dump uses the pcap daq for packet acquisition. It therefore does not count filtered packets.

Note that the dump DAQ inline mode is not an actual inline mode. Furthermore, you will probably want to have the

pcap DAQ acquire in another mode like this:

./snort -r <pcap> -Q --daq dump --daq-var load-mode=read-file

./snort -i <device> -Q --daq dump --daq-var load-mode=passive

16

1.5.8 Statistics Changes

The Packet Wire Totals and Action Stats sections of Snort’s output include additional fields:

• Filtered count of packets filtered out and not handed to Snort for analysis.

• Injected packets Snort generated and sent, e.g. TCP resets.

• Allow packets Snort analyzed and did not take action on.

• Block packets Snort did not forward, e.g. due to a block rule.

• Replace packets Snort modified.

• Whitelist packets that caused Snort to allow a flow to pass w/o inspection by any analysis program.

• Blacklist packets that caused Snort to block a flow from passing.

• Ignore packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort.

The action stats show ”blocked” packets instead of ”dropped” packets to avoid confusion between dropped packets

(those Snort didn’t actually see) and blocked packets (those Snort did not allow to pass).

1.6 Reading pcap files

Instead of having Snort listen on an interface, you can give it a packet capture to read. Snort will read and analyze the

packets as if they came off the wire. This can be useful for testing and debugging Snort.

1.6.1 Command line arguments

Any of the below can be specified multiple times on the command line (-r included) and in addition to other Snort

command line options. Note, however, that specifying --pcap-reset and --pcap-show multiple times has the same

effect as specifying them once.

Option Description

-r <file> Read a single pcap.

--pcap-single=<file> Same as -r. Added for completeness.

--pcap-file=<file> File that contains a list of pcap files to read. Can specify path to each pcap or

directory to recurse to get pcaps.

--pcap-list="<list>" A space separated list of pcaps to read.

--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ASCII order.

--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or directory. This fil-

ter will apply to any --pcap-file or --pcap-dir arguments following. Use

--pcap-no-filter to delete filter for following --pcap-file or --pcap-dir

arguments or specify --pcap-filter again to forget previous filter and to apply

to following --pcap-file or --pcap-dir arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory.

--pcap-reset If reading multiple pcaps, reset snort to post-configuration state before reading

next pcap. The default, i.e. without this option, is not to reset state.

--pcap-show Print a line saying what pcap is currently being read.

1.6.2 Examples

Read a single pcap

$ snort -r foo.pcap

$ snort --pcap-single=foo.pcap

17

Read pcaps from a file

$ cat foo.txt

foo1.pcap

foo2.pcap

/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read foo1.pcap, foo2.pcap and all files under /home/foo/pcaps. Note that Snort will not try to determine

whether the files under that directory are really pcap files or not.

Read pcaps from a command line list

$ snort --pcap-list="foo1.pcap foo2.pcap foo3.pcap"

This will read foo1.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory

$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /home/foo/pcaps.

Using filters

$ cat foo.txt

foo1.pcap

foo2.pcap

/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt

$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pcaps

The above will only include files that match the shell pattern ”*.pcap”, in other words, any file ending in ”.pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \

> --pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps

In the above, the first filter ”*.pcap” will only be applied to the pcaps in the file ”foo.txt” (and any directories that are

recursed in that file). The addition of the second filter ”*.cap” will cause the first filter to be forgotten and then applied

to the directory /home/foo/pcaps, so only files ending in ”.cap” will be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \

> --pcap-no-filter --pcap-dir=/home/foo/pcaps

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under

/home/foo/pcaps, so all files found under /home/foo/pcaps will be included.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \

> --pcap-no-filter --pcap-dir=/home/foo/pcaps \

> --pcap-filter="*.cap" --pcap-dir=/home/foo/pcaps2

In this example, the first filter will be applied to foo.txt, then no filter will be applied to the files found under

/home/foo/pcaps, so all files found under /home/foo/pcaps will be included, then the filter ”*.cap” will be applied

to files found under /home/foo/pcaps2.

18

Resetting state

$ snort --pcap-dir=/home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foo/pcaps, but after each pcap is read, Snort will be reset to

a post-configuration state, meaning all buffers will be flushed, statistics reset, etc. For each pcap, it will be like Snort

is seeing traffic for the first time.

Printing the pcap

$ snort --pcap-dir=/home/foo/pcaps --pcap-show

The above example will read all of the files under /home/foo/pcaps and will print a line indicating which pcap is

currently being read.

1.7 Basic Output

Snort does a lot of work and outputs some useful statistics when it is done. Many of these are self-explanatory. The

others are summarized below. This does not include all possible output data, just the basics.

1.7.1 Timing Statistics

This section provides basic timing statistics. It includes total seconds and packets as well as packet processing rates.

The rates are based on whole seconds, minutes, etc. and only shown when non-zero.

Example:

===

Run time for packet processing was 175.856509 seconds

Snort processed 3716022 packets.

Snort ran for 0 days 0 hours 2 minutes 55 seconds

Pkts/min: 1858011

Pkts/sec: 21234

===

1.7.2 Packet I/O Totals

This section shows basic packet acquisition and injection peg counts obtained from the DAQ. If you are reading pcaps,

the totals are for all pcaps combined, unless you use –pcap-reset, in which case it is shown per pcap.

• Outstanding indicates how many packets are buffered awaiting processing. The way this is counted varies per

DAQ so the DAQ documentation should be consulted for more info.

• Filtered packets are not shown for pcap DAQs.

• Injected packets are the result of active response which can be configured for inline or passive modes.

Example:

===

Packet I/O Totals:

Received: 3716022

Analyzed: 3716022 (100.000%)

19

Dropped: 0 (0.000%)

Filtered: 0 (0.000%)

Outstanding: 0 (0.000%)

Injected: 0

===

1.7.3 Protocol Statistics

Traffic for all the protocols decoded by Snort is summarized in the breakdown section. This traffic includes internal

”pseudo-packets” if preprocessors such as frag3 and stream5 are enabled so the total may be greater than the number

of analyzed packets in the packet I/O section.

• Disc counts are discards due to basic encoding integrity flaws that prevents Snort from decoding the packet.

• Other includes packets that contained an encapsulation that Snort doesn’t decode.

• S5 G 1/2 is the number of client/server sessions stream5 flushed due to cache limit, session timeout, session

reset.

Example:

===

Breakdown by protocol (includes rebuilt packets):

Eth: 3722347 (100.000%)

VLAN: 0 (0.000%)

IP4: 1782394 (47.884%)

Frag: 3839 (0.103%)

ICMP: 38860 (1.044%)

UDP: 137162 (3.685%)

TCP: 1619621 (43.511%)

IP6: 1781159 (47.850%)

IP6 Ext: 1787327 (48.016%)

IP6 Opts: 6168 (0.166%)

Frag6: 3839 (0.103%)

ICMP6: 1650 (0.044%)

UDP6: 140446 (3.773%)

TCP6: 1619633 (43.511%)

Teredo: 18 (0.000%)

ICMP-IP: 0 (0.000%)

EAPOL: 0 (0.000%)

IP4/IP4: 0 (0.000%)

IP4/IP6: 0 (0.000%)

IP6/IP4: 0 (0.000%)

IP6/IP6: 0 (0.000%)

GRE: 202 (0.005%)

GRE Eth: 0 (0.000%)

GRE VLAN: 0 (0.000%)

GRE IP4: 0 (0.000%)

GRE IP6: 0 (0.000%)

GRE IP6 Ext: 0 (0.000%)

GRE PPTP: 202 (0.005%)

GRE ARP: 0 (0.000%)

GRE IPX: 0 (0.000%)

GRE Loop: 0 (0.000%)

MPLS: 0 (0.000%)

ARP: 104840 (2.817%)

20

IPX: 60 (0.002%)

Eth Loop: 0 (0.000%)

Eth Disc: 0 (0.000%)

IP4 Disc: 0 (0.000%)

IP6 Disc: 0 (0.000%)

TCP Disc: 0 (0.000%)

UDP Disc: 1385 (0.037%)

ICMP Disc: 0 (0.000%)

All Discard: 1385 (0.037%)

Other: 57876 (1.555%)

Bad Chk Sum: 32135 (0.863%)

Bad TTL: 0 (0.000%)

S5 G 1: 1494 (0.040%)

S5 G 2: 1654 (0.044%)

Total: 3722347

===

1.7.4 Snort Memory Statistics

On systems with mallinfo (3), you will see additional statistics. Check the man page of mallinfo for details

Example:

===

Memory usage summary:

Total non-mmapped bytes (arena): 415481856

Bytes in mapped regions (hblkhd): 409612288

Total allocated space (uordblks): 92130384

Total free space (fordblks): 323351472

Topmost releasable block (keepcost): 3200

===

1.7.5 Actions, Limits, and Verdicts

Action and verdict counts show what Snort did with the packets it analyzed. This information is only output in IDS

mode (when snort is run with the -c <conf> option).

• Alerts is the number of alert, and block actions processed as determined by the rule actions. Here block includes

block, drop, and reject actions.

Limits arise due to real world constraints on processing time and available memory. These indicate potential actions

that did not happen:

• Match Limit counts rule matches were not processed due to the config detection: max queue events

setting. The default is 5.

• Queue Limit counts events couldn’t be stored in the event queue due to the config event queue: max queue

setting. The default is 8.

• Log Limit counts events were not alerted due to the config event queue: log setting. The default is 3.

• Event Limit counts events not alerted due to event filter limits.

• Alert Limit counts events were not alerted because they already were triggered on the session.

Verdicts are rendered by Snort on each packet:

21

• Allow = packets Snort analyzed and did not take action on.

• Block = packets Snort did not forward, e.g. due to a block rule. ”Block” is used instead of ”Drop” to avoid

confusion between dropped packets (those Snort didn’t actually see) and blocked packets (those Snort did not

allow to pass).

• Replace = packets Snort modified, for example, due to normalization or replace rules. This can only happen in

inline mode with a compatible DAQ.

• Whitelist = packets that caused Snort to allow a flow to pass w/o inspection by any analysis program. Like

blacklist, this is done by the DAQ or by Snort on subsequent packets.

• Blacklist = packets that caused Snort to block a flow from passing. This is the case when a block TCP rule fires.

If the DAQ supports this in hardware, no further packets will be seen by Snort for that session. If not, snort will

block each packet and this count will be higher.

• Ignore = packets that caused Snort to allow a flow to pass w/o inspection by this instance of Snort. Like blacklist,

this is done by the DAQ or by Snort on subsequent packets.

• Int Blklst = packets that are GTP, Teredo, 6in4 or 4in6 encapsulated that are being blocked. These packets could

get the Blacklist verdict if config tunnel verdicts was set for the given protocol. Note that these counts are

output only if non-zero. Also, this count is incremented on the first packet in the flow that alerts. The alerting

packet and all following packets on the flow will be counted under Block.

• Int Whtlst = packets that are GTP, Teredo, 6in4 or 4in6 encapsulated that are being allowed. These packets could

get the Whitelist verdict if config tunnel verdicts was set for the given protocol. Note that these counts

are output only if non-zero. Also, this count is incremented for all packets on the flow starting with the alerting

packet.

Example:

===

Action Stats:

Alerts: 0 (0.000%)

Logged: 0 (0.000%)

Passed: 0 (0.000%)

Limits:

Match: 0

Queue: 0

Log: 0

Event: 0

Alert: 0

Verdicts:

Allow: 3716022 (100.000%)

Block: 0 (0.000%)

Replace: 0 (0.000%)

Whitelist: 0 (0.000%)

Blacklist: 0 (0.000%)

Ignore: 0 (0.000%)

===

1.8 Tunneling Protocol Support

Snort supports decoding of many tunneling protocols, including GRE, PPTP over GRE, MPLS, IP in IP, and ERSPAN,

all of which are enabled by default.

To disable support for any GRE related encapsulation, PPTP over GRE, IPv4/IPv6 over GRE, and ERSPAN, an extra

configuration option is necessary:

22

$./configure --disable-gre

To disable support for MPLS, an separate extra configuration option is necessary:

$./configure --disable-mpls

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scenarios such as

Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or

Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is logged, e.g.

Eth IP1 GRE IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

and

Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

△!
NOTE

Decoding of PPTP, which utilizes GRE and PPP, is not currently supported on architectures that require word

alignment such as SPARC.

1.9 Miscellaneous

1.9.1 Running Snort as a Daemon

If you want to run Snort as a daemon, you can the add -D switch to any combination described in the previous sections.

Please notice that if you want to be able to restart Snort by sending a SIGHUP signal to the daemon, you must specify

the full path to the Snort binary when you start it, for example:

/usr/local/bin/snort -d -h 192.168.1.0/24 \

-l /var/log/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

23

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file in the log directory. In Snort 2.6, the --pid-path

command line switch causes Snort to write the PID file in the directory specified.

Additionally, the --create-pidfile switch can be used to force creation of a PID file even when not running in

daemon mode.

The PID file will be locked so that other snort processes cannot start. Use the --nolock-pidfile switch to not lock

the PID file.

If you do not wish to include the name of the interface in the PID file, use the --no-interface-pidfile switch.

1.9.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a directory, you must use the –dump-dynamic-rules command line

option. These rule stub files are used in conjunction with the shared object rules. The path can be relative or absolute.

/usr/local/bin/snort -c /usr/local/etc/snort.conf \

--dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using the config option dump-dynamic-rules-path as follows:

config dump-dynamic-rules-path: /tmp/sorules

The path configured by command line has precedence over the one configured using dump-dynamic-rules-path.

/usr/local/bin/snort -c /usr/local/etc/snort.conf \

--dump-dynamic-rules

snort.conf:

config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /tmp/sorules.

1.9.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, you might want to use the -O switch. This switch obfuscates

your IP addresses in packet printouts. This is handy if you don’t want people on the mailing list to know the IP

addresses involved. You can also combine the -O switch with the -h switch to only obfuscate the IP addresses of hosts

on the home network. This is useful if you don’t care who sees the address of the attacking host. For example, you

could use the following command to read the packets from a log file and dump them to the screen, obfuscating only

the addresses from the 192.168.1.0/24 class C network:

./snort -d -v -r snort.log -O -h 192.168.1.0/24

1.9.4 Specifying Multiple-Instance Identifiers

In Snort v2.4, the -G command line option was added that specifies an instance identifier for the event logs. This option

can be used when running multiple instances of snort, either on different CPUs, or on the same CPU but a different

interface. Each Snort instance will use the value specified to generate unique event IDs. Users can specify either a

decimal value (-G 1) or hex value preceded by 0x (-G 0x11). This is also supported via a long option --logid.

24

1.9.5 Snort Modes

Snort can operate in three different modes namely tap (passive), inline, and inline-test. Snort policies can be configured

in these three modes too.

Explanation of Modes

• Inline

When Snort is in Inline mode, it acts as an IPS allowing drop rules to trigger. Snort can be configured to run in

inline mode using the command line argument -Q and snort config option policy mode as follows:

snort -Q

config policy_mode:inline

• Passive

When Snort is in Passive mode, it acts as a IDS. Drop rules are not loaded (without –treat-drop-as-alert). Snort

can be configured to passive mode using the snort config option policy mode as follows:

config policy_mode:tap

• Inline-Test

Inline-Test mode simulates the inline mode of snort, allowing evaluation of inline behavior without affecting

traffic. The drop rules will be loaded and will be triggered as a Wdrop (Would Drop) alert. Snort can be

configured to run in inline-test mode using the command line option (–enable-inline-test) or using the snort

config option policy mode as follows:

snort --enable-inline-test

config policy_mode:inline_test

△!
NOTE

Please note –enable-inline-test cannot be used in conjunction with -Q.

Behavior of different modes with rule options

Rule Option Inline Mode Passive Mode Inline-Test Mode

reject Drop + Response Alert + Response Wdrop + Response

react Blocks and send notice Blocks and send notice Blocks and send notice

normalize Normalizes packet Doesn’t normalize Doesn’t normalize

replace replace content Doesn’t replace Doesn’t replace

respond close session close session close session

Behavior of different modes with rules actions

25

Adapter Mode Snort args config policy mode Drop Rule Handling

Passive --treat-drop-as-alert tap Alert

Passive no args tap Not Loaded

Passive --treat-drop-as-alert inline test Alert

Passive no args inline test Would Drop

Passive --treat-drop-as-alert inline Alert

Passive no args inline Not loaded + warning

Inline Test --enable-inline-test --treat-drop-as-alert tap Alert

Inline Test --enable-inline-test tap Would Drop

Inline Test --enable-inline-test --treat-drop-as-alert inline test Alert

Inline Test --enable-inline-test inline test Would Drop

Inline Test --enable-inline-test --treat-drop-as-alert inline Alert

Inline Test --enable-inline-test inline Would Drop

Inline -Q --treat-drop-as-alert tap Alert

Inline -Q tap Alert

Inline -Q --treat-drop-as-alert inline test Alert

Inline -Q inline test Would Drop

Inline -Q --treat-drop-as-alert inline Alert

Inline -Q inline Drop

1.10 Control socket

Snort can be configured to provide a Unix socket that can be used to issue commands to the running process. You must

build snort with the --enable-control-socket option. The control socket functionality is supported on Linux only.

Snort can be configured to use control socket using the command line argument --cs-dir <path> and snort config

option cs dir as follows:

snort --cs-dir <path>

config cs_dir:<path>

<path> specifies the directory for snort to create the socket. If relative path is used, the path is relative to pid path

specified. If there is no pid path specified, it is relative to current working directory.

A command snort control is made and installed along with snort in the same bin directory when configured with

the --enable-control-socket option.

1.11 Configure signal value

On some systems, signal used by snort might be used by other functions. To avoid conflicts, users can change the

default signal value through ./configure options for non-Windows system.

These signals can be changed:

• SIGNAL SNORT RELOAD

• SIGNAL SNORT DUMP STATS

• SIGNAL SNORT ROTATE STATS

• SIGNAL SNORT READ ATTR TBL

Syntax:

26

./configure SIGNAL_SNORT_RELOAD=<value/name> SIGNAL_SNORT_DUMP_STATS=<value/name>\

SIGNAL_SNORT_READ_ATTR_TBL=<value/name> SIGNAL_SNORT_ROTATE_STATS=<value/name>

You can set those signals to user defined values or known signal names in the system. The following example changes

the rotate stats signal to 31 and reload attribute table to signal SIGUSR2 :

./configure SIGNAL_SNORT_ROTATE_STATS=31 SIGNAL_SNORT_READ_ATTR_TBL=SIGUSR2

If the same signal is assigned more than once a warning will be logged during snort initialization. If a signal handler

cannot be installed a warning will be logged and that has to be fixed, otherwise the functionality will be lost.

Signals used in snort

Signal name Default value Action

SIGTERM SIGTERM exit

SIGINT SIGINT exit

SIGQUIT SIGQUIT exit

SIGPIPE SIGPIPE ignore

SIGNAL SNORT RELOAD SIGHUP reload snort

SIGNAL SNORT DUMP STATS SIGUSR1 dump stats

SIGNAL SNORT ROTATE STATS SIGUSR2 rotate stats

SIGNAL SNORT READ ATTR TBL SIGURG reload attribute table

SIGNAL SNORT CHILD READY SIGCHLD internal use in daemon mode

1.12 More Information

Chapter 2 contains much information about many configuration options available in the configuration file. The Snort

manual page and the output of snort -? or snort --help contain information that can help you get Snort running

in several different modes.

△!
NOTE

In many shells, a backslash (\) is needed to escape the ?, so you may have to type snort -\? instead of

snort -? for a list of Snort command line options.

The Snort web page (http://www.snort.org) and the Snort Users mailing list:

http://marc.theaimsgroup.com/?l=snort-users

at snort-users@lists.snort.org provide informative announcements as well as a venue for community discussion

and support. There’s a lot to Snort, so sit back with a beverage of your choosing and read the documentation and

mailing list archives.

27

Chapter 2

Configuring Snort

2.1 Includes

The include keyword allows other snort config files to be included within the snort.conf indicated on the Snort

command line. It works much like an #include from the C programming language, reading the contents of the named

file and adding the contents in the place where the include statement appears in the file.

2.1.1 Format

include <include file path/name>

△!
NOTE

Note that there is no semicolon at the end of this line.

Included files will substitute any predefined variable values into their own variable references. See Section 2.1.2 for

more information on defining and using variables in Snort config files.

2.1.2 Variables

Three types of variables may be defined in Snort:

• var

• portvar

• ipvar

These are simple substitution variables set with the var, ipvar, or portvar keywords as follows:

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN packet";)

include $RULE_PATH/example.rule

28

IP Variables and IP Lists

IPs may be specified individually, in a list, as a CIDR block, or any combination of the three. IP variables should be

specified using ’ipvar’ instead of ’var’. Using ’var’ for an IP variable is still allowed for backward compatibility, but it

will be deprecated in a future release.

IP variable name can begin with an alphanumeric character [A-Za-z0-9] or ’ ’ and should be followed by characters

and numbers. Only numbers are not accepted as variable names.

IPs, IP lists, and CIDR blocks may be negated with ’!’. Negation is handled differently compared with Snort versions

2.7.x and earlier. Previously, each element in a list was logically OR’ed together. IP lists now OR non-negated

elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IP from 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2

and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The element ’any’ can be used to match all IPs, although ’!any’

is not allowed. Also, negated IP ranges that are more general than non-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP lists.

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,![2.2.2.2,2.2.2.3]]

alert tcp $EXAMPLE any -> any any (msg:"Example"; sid:1;)

alert tcp [1.0.0.0/8,!1.1.1.0/24] any -> any any (msg:"Example";sid:2;)

The following examples demonstrate some invalid uses of IP variables and IP lists.

Use of !any:

ipvar EXAMPLE any

alert tcp !$EXAMPLE any -> any any (msg:"Example";sid:3;)

Different use of !any:

ipvar EXAMPLE !any

alert tcp $EXAMPLE any -> any any (msg:"Example";sid:3;)

Logical contradictions:

ipvar EXAMPLE [1.1.1.1,!1.1.1.1]

Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,!1.1.0.0/16]

Port Variables and Port Lists

Portlists supports the declaration and lookup of ports and the representation of lists and ranges of ports. Variables,

ranges, or lists may all be negated with ’!’. Also, ’any’ will specify any ports, but ’!any’ is not allowed. Valid port

ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranges may be specified with a ’:’, such as in:

29

[10:50,888:900]

Port variables should be specified using ’portvar’. The use of ’var’ to declare a port variable will be deprecated in a

future release. For backwards compatibility, a ’var’ can still be used to declare a port variable, provided the variable

name either ends with ’ PORT’ or begins with ’PORT ’.

The following examples demonstrate several valid usages of both port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [!70:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLE1 -> any $EXAMPLE2_PORT (msg:"Example"; sid:1;)

alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid:2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Example"; sid:3;)

Several invalid examples of port variables and port lists are demonstrated below:

Use of !any:

portvar EXAMPLE5 !any

var EXAMPLE5 !any

Logical contradictions:

portvar EXAMPLE6 [80,!80]

Ports out of range:

portvar EXAMPLE7 [65536]

Incorrect declaration and use of a port variable:

var EXAMPLE8 80

alert tcp any $EXAMPLE8 -> any any (msg:"Example"; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLE1 any -> any any (msg:"Example"; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You can define meta-variables using the $ operator. These can

be used with the variable modifier operators ? and -, as described in the following table:

30

Variable Syntax Description

var Defines a meta-variable.

$(var) or $var Replaces with the contents of variable var.

$(var:-default) Replaces the contents of the variable var with “default” if var is undefined.

$(var:?message) Replaces with the contents of variable var or prints out the error message and

exits.

Here is an example of advanced variable usage in action:

ipvar MY_NET 192.168.1.0/24

log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For instance, port variables can be defined in terms of other port

variables, but old-style variables (with the ’var’ keyword) can not be embedded inside a ’portvar’.

Valid embedded variable:

portvar pvar1 80

portvar pvar2 [$pvar1,90]

Invalid embedded variable:

var pvar1 80

portvar pvar2 [$pvar1,90]

Likewise, variables can not be redefined if they were previously defined as a different type. They should be renamed

instead:

Invalid redefinition:

var pvar 80

portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can be specified in the configuration file.

Format

config <directive> [: <value>]

31

Config Directive Description

config alert with interface name Appends interface name to alert (snort -I).

config alertfile: <filename> Sets the alerts output file.

config asn1: <max-nodes> Specifies the maximum number of nodes to track when doing

ASN1 decoding. See Section 3.5.36 for more information and

examples.

config autogenerate preprocessor

decoder rules

If Snort was configured to enable decoder and preprocessor

rules, this option will cause Snort to revert back to its origi-

nal behavior of alerting if the decoder or preprocessor generates

an event.

config bpf file: <filename> Specifies BPF filters (snort -F).

config checksum drop: <types> Types of packets to drop if invalid checksums. Values: none,

noip, notcp, noicmp, noudp, ip, tcp, udp, icmp or all

(only applicable in inline mode and for packets checked per

checksum mode config option).

config checksum mode: <types> Types of packets to calculate checksums. Values: none, noip,

notcp, noicmp, noudp, ip, tcp, udp, icmp or all.

config chroot: <dir> Chroots to specified dir (snort -t).

config classification: <class> See Table 3.2 for a list of classifications.

config cs dir: <path> configure snort to provide a Unix socket in the path that can be

used to issue commands to the running process. See Section

1.10 for more details.

config daemon Forks as a daemon (snort -D).

config decode data link Decodes Layer2 headers (snort -e).

config default rule state: <state> Global configuration directive to enable or disable the loading

of rules into the detection engine. Default (with or without di-

rective) is enabled. Specify disabled to disable loading rules.

config daq: <type> Selects the type of DAQ to instantiate. The DAQ with the high-

est version of the given type is selected if there are multiple of

the same type (this includes any built-in DAQs).

config daq mode: <mode> Select the DAQ mode: passive, inline, or read-file. Not all

DAQs support modes. See the DAQ distro README for possi-

ble DAQ modes or list DAQ capabilities for a brief summary.

config daq var: <name=value> Set a DAQ specific variable. Snort just passes this information

down to the DAQ. See the DAQ distro README for possible

DAQ variables.

config daq dir: <dir> Tell Snort where to look for available dynamic DAQ modules.

This can be repeated. The selected DAQ will be the one with

the latest version.

config daq list: [<dir>] Tell Snort to dump basic DAQ capabilities and exit. You can op-

tionally specify a directory to include any dynamic DAQs from

that directory. You can also precede this option with extra DAQ

directory options to look in multiple directories.

config decode esp: [enable |

disable]

Enable or disable the decoding of Encapsulated Security Proto-

col (ESP). This is disabled by default. Some networks use ESP

for authentication without encryption, allowing their content to

be inspected. Encrypted ESP may cause some false positives if

this option is enabled.

32

config detection: [search-method

<method>]

Select type of fast pattern matcher algorithm to use.

• search-method <method>

– Queued match search methods - Matches are

queued until the fast pattern matcher is finished with

the payload, then evaluated. This was found to gen-

erally increase performance through fewer cache

misses (evaluating each rule would generally blow

away the fast pattern matcher state in the cache).

∗ ac and ac-q - Aho-Corasick Full (high mem-

ory, best performance).

∗ ac-bnfa and ac-bnfa-q - Aho-Corasick Bi-

nary NFA (low memory, high performance)

∗ lowmem and lowmem-q - Low Memory Key-

word Trie (low memory, moderate perfor-

mance)

∗ ac-split - Aho-Corasick Full with ANY-

ANY port group evaluated separately (low

memory, high performance). Note this

is shorthand for search-method ac,

split-any-any

∗ intel-cpm - Intel CPM library (must have

compiled Snort with location of libraries to en-

able this)

– No queue search methods - The ”nq” option spec-

ifies that matches should not be queued and evalu-

ated as they are found.

∗ ac-nq - Aho-Corasick Full (high memory, best

performance).

∗ ac-bnfa-nq - Aho-Corasick Binary NFA (low

memory, high performance). This is the default

search method if none is specified.

∗ lowmem-nq - Low Memory Keyword Trie (low

memory, moderate performance)

– Other search methods (the above are considered su-

perior to these)

∗ ac-std - Aho-Corasick Standard (high mem-

ory, high performance)

∗ acs - Aho-Corasick Sparse (high memory,

moderate performance)

∗ ac-banded - Aho-Corasick Banded (high

memory, moderate performance)

∗ ac-sparsebands - Aho-Corasick Sparse-

Banded (high memory, moderate performance)

33

config detection: [split-any-any]

[search-optimize] [max-pattern-len

<int>]

Other options that affect fast pattern matching.

• split-any-any

– A memory/performance tradeoff. By default, ANY-

ANY port rules are added to every non ANY-ANY

port group so that only one port group rule eval-

uation needs to be done per packet. Not putting

the ANY-ANY port rule group into every other port

group can significantly reduce the memory footprint

of the fast pattern matchers if there are many ANY-

ANY port rules. But doing so may require two port

group evaluations per packet - one for the specific

port group and one for the ANY-ANY port group,

thus potentially reducing performance. This option

is generic and can be used with any search-method

but was specifically intended for use with the ac

search-method where the memory footprint is sig-

nificantly reduced though overall fast pattern per-

formance is better than ac-bnfa. Of note is that

the lower memory footprint can also increase per-

formance through fewer cache misses. Default is

not to split the ANY-ANY port group.

• search-optimize

– Optimizes fast pattern memory when used with

search-method ac or ac-split by dynamically

determining the size of a state based on the total

number of states. When used with ac-bnfa, some

fail-state resolution will be attempted, potentially

increasing performance. Default is not to optimize.

• max-pattern-len <integer>

– This is a memory optimization that specifies the

maximum length of a pattern that will be put in the

fast pattern matcher. Patterns longer than this length

will be truncated to this length before inserting into

the pattern matcher. Useful when there are very

long contents being used and truncating the pattern

won’t diminish the uniqueness of the patterns. Note

that this may cause more false positive rule evalu-

ations, i.e. rules that will be evaluated because a

fast pattern was matched, but eventually fail, how-

ever CPU cache can play a part in performance so a

smaller memory footprint of the fast pattern matcher

can potentially increase performance. Default is to

not set a maximum pattern length.

34

config detection:

[no stream inserts]

[max queue events <int>]

[enable-single-rule-group]

[bleedover-port-limit]

Other detection engine options.

• no stream inserts

– Specifies that stream inserted packets should not be

evaluated against the detection engine. This is a po-

tential performance improvement with the idea that

the stream rebuilt packet will contain the payload

in the inserted one so the stream inserted packet

doesn’t need to be evaluated. Default is to inspect

stream inserts.

• max queue events <integer>

– Specifies the maximum number of matching fast-

pattern states to queue per packet. Default is 5

events.

• enable-single-rule-group

– Put all rules into one port group. Not recommended.

Default is not to do this.

• bleedover-port-limit

– The maximum number of source or destination

ports designated in a rule before the rule is consid-

ered an ANY-ANY port group rule. Default is 1024.

35

config detection: [debug]

[debug-print-nocontent-rule-tests]

[debug-print-rule-group-build-details]

[debug-print-rule-groups-uncompiled]

[debug-print-rule-groups-compiled]

[debug-print-fast-pattern]

[bleedover-warnings-enabled]

Options for detection engine debugging.

• debug

– Prints fast pattern information for a particular port

group.

• debug-print-nocontent-rule-tests

– Prints port group information during packet evalua-

tion.

• debug-print-rule-group-build-details

– Prints port group information during port group

compilation.

• debug-print-rule-groups-uncompiled

– Prints uncompiled port group information.

• debug-print-rule-groups-compiled

– Prints compiled port group information.

• debug-print-fast-pattern

– For each rule with fast pattern content, prints infor-

mation about the content being used for the fast pat-

tern matcher.

• bleedover-warnings-enabled

– Prints a warning if the number of source or

destination ports used in a rule exceed the

bleedover-port-limit forcing the rule to be

moved into the ANY-ANY port group.

config disable decode alerts Turns off the alerts generated by the decode phase of Snort.

config disable inline init failopen Disables failopen thread that allows inline traffic to pass

while Snort is starting up. Only useful if Snort was

configured with –enable-inline-init-failopen. (snort

--disable-inline-init-failopen)

config disable ipopt alerts Disables IP option length validation alerts.

config disable tcpopt alerts Disables option length validation alerts.

config

disable tcpopt experimental alerts

Turns off alerts generated by experimental TCP options.

config disable tcpopt obsolete alerts Turns off alerts generated by obsolete TCP options.

config disable tcpopt ttcp alerts Turns off alerts generated by T/TCP options.

config disable ttcp alerts Turns off alerts generated by T/TCP options.

config dump chars only Turns on character dumps (snort -C).

config dump payload Dumps application layer (snort -d).

config dump payload verbose Dumps raw packet starting at link layer (snort -X).

config enable decode drops Enables the dropping of bad packets identified by decoder (only

applicable in inline mode).

config enable decode oversized alerts Enable alerting on packets that have headers containing length

fields for which the value is greater than the length of the packet.

36

config enable decode oversized drops Enable dropping packets that have headers containing length

fields for which the value is greater than the length of the packet.

enable decode oversized alerts must also be enabled for

this to be effective (only applicable in inline mode).

config enable deep teredo inspection Snort’s packet decoder only decodes Teredo (IPv6 over UDP

over IPv4) traffic on UDP port 3544. This option makes Snort

decode Teredo traffic on all UDP ports.

config enable ipopt drops Enables the dropping of bad packets with bad/truncated IP op-

tions (only applicable in inline mode).

config enable mpls multicast Enables support for MPLS multicast. This option is needed

when the network allows MPLS multicast traffic. When this

option is off and MPLS multicast traffic is detected, Snort will

generate an alert. By default, it is off.

config enable mpls overlapping ip Enables support for overlapping IP addresses in an MPLS net-

work. In a normal situation, where there are no overlapping

IP addresses, this configuration option should not be turned on.

However, there could be situations where two private networks

share the same IP space and different MPLS labels are used to

differentiate traffic from the two VPNs. In such a situation, this

configuration option should be turned on. By default, it is off.

config enable tcpopt drops Enables the dropping of bad packets with bad/truncated TCP

option (only applicable in inline mode).

config

enable tcpopt experimental drops

Enables the dropping of bad packets with experimental TCP op-

tion. (only applicable in inline mode).

config enable tcpopt obsolete drops Enables the dropping of bad packets with obsolete TCP option.

(only applicable in inline mode).

config enable tcpopt ttcp drops Enables the dropping of bad packets with T/TCP option. (only

applicable in inline mode).

config enable ttcp drops Enables the dropping of bad packets with T/TCP option. (only

applicable in inline mode).

config event filter: memcap

<bytes>

Set global memcap in bytes for thresholding. Default is

1048576 bytes (1 megabyte).

config event queue: [max queue

<num>] [log <num>] [order events

<order>]

Specifies conditions about Snort’s event queue. You can use the

following options:

• max queue <integer> (max events supported)

• log <integer> (number of events to log)

• order events [priority|content length] (how to

order events within the queue)

See Section 2.4.4 for more information and examples.

config flowbits size: <num-bits> Specifies the maximum number of flowbit tags that can be used

within a rule set. The default is 1024 bits and maximum is 2048.

config ignore ports: <proto>

<port-list>

Specifies ports to ignore (useful for ignoring noisy NFS traffic).

Specify the protocol (TCP, UDP, IP, or ICMP), followed by a

list of ports. Port ranges are supported.

config interface: <iface> Sets the network interface (snort -i).

37

config ipv6 frag:

[bsd icmp frag alert on|off]

[, bad ipv6 frag alert on|off]

[, frag timeout <secs>] [,

max frag sessions <max-track>]

The following options can be used:

• bsd icmp frag alert on|off (Specify whether or not

to alert. Default is on)

• bad ipv6 frag alert on|off (Specify whether or not

to alert. Default is on)

• frag timeout <integer> (Specify amount of time in

seconds to timeout first frag in hash table)

• max frag sessions <integer> (Specify the number

of fragments to track in the hash table)

config logdir: <dir> Sets the logdir (snort -l).

config log ipv6 extra data Set Snort to log IPv6 source and destination addresses as uni-

fied2 extra data events.

config max attribute hosts: <hosts> Sets a limit on the maximum number of hosts to read from

the attribute table. Minimum value is 32 and the maximum is

524288 (512k). The default is 10000. If the number of hosts

in the attribute table exceeds this value, an error is logged and

the remainder of the hosts are ignored. This option is only sup-

ported with a Host Attribute Table (see section 2.7).

config max attribute services per host:

<hosts>

Sets a per host limit on the maximum number of services to

read from the attribute table. Minimum value is 1 and the max-

imum is 65535. The default is 100. For a given host, if the

number of services in the attribute table exceeds this value, an

error is logged and the remainder of the services for that host

are ignored. This option is only supported with a Host Attribute

Table (see section 2.7).

config max mpls labelchain len:

<num-hdrs>

Sets a Snort-wide limit on the number of MPLS headers a

packet can have. Its default value is -1, which means that there

is no limit on label chain length.

config max ip6 extensions:

<num-extensions>

Sets the maximum number of IPv6 extension headers that Snort

will decode. Default is 8.

config min ttl: <ttl> Sets a Snort-wide minimum ttl to ignore all traffic.

config mpls payload type:

ipv4|ipv6|ethernet

Sets a Snort-wide MPLS payload type. In addition to ipv4, ipv6

and ethernet are also valid options. The default MPLS payload

type is ipv4

config no promisc Disables promiscuous mode (snort -p).

config nolog Disables logging. Note: Alerts will still occur. (snort -N).

config nopcre Disables pcre pattern matching.

config obfuscate Obfuscates IP Addresses (snort -O).

config order: <order> Changes the order that rules are evaluated, e.g.: pass alert log

activation.

config pcre match limit:

<integer>

Restricts the amount of backtracking a given PCRE option. For

example, it will limit the number of nested repeats within a pat-

tern. A value of -1 allows for unlimited PCRE, up to the PCRE

library compiled limit (around 10 million). A value of 0 results

in no PCRE evaluation. The snort default value is 1500.

config pcre match limit recursion:

<integer>

Restricts the amount of stack used by a given PCRE option. A

value of -1 allows for unlimited PCRE, up to the PCRE library

compiled limit (around 10 million). A value of 0 results in no

PCRE evaluation. The snort default value is 1500. This option

is only useful if the value is less than the pcre match limit

config pkt count: <N> Exits after N packets (snort -n).

38

config policy version:

<base-version-string>

[<binding-version-string>]

Supply versioning information to configuration files. Base ver-

sion should be a string in all configuration files including in-

cluded ones. In addition, binding version must be in any file

configured with config binding. This option is used to avoid

race conditions when modifying and loading a configuration

within a short time span - before Snort has had a chance to load

a previous configuration.

config profile preprocs Print statistics on preprocessor performance. See Section 2.5.2

for more details.

config profile rules Print statistics on rule performance. See Section 2.5.1 for more

details.

config protected content:

md5|sha256|sha512

Specifies a default algorithm to use for protected content rules.

config quiet Disables banner and status reports (snort -q). NOTE: The

command line switch -q takes effect immediately after pro-

cessing the command line parameters, whereas using config

quiet in snort.conf takes effect when the configuration line in

snort.conf is parsed. That may occur after other configuration

settings that result in output to console or syslog.

config reference: <ref> Adds a new reference system to Snort, e.g.: myref

http://myurl.com/?id=

config reference net <cidr> For IP obfuscation, the obfuscated net will be used if the packet

contains an IP address in the reference net. Also used to de-

termine how to set up the logging directory structure for the

session post detection rule option and ASCII output plugin -

an attempt is made to name the log directories after the IP ad-

dress that is not in the reference net.

config response: [attempts

<count>] [, device <dev>]

Set the number of strafing attempts per injected response and/or

the device, such as eth0, from which to send responses. These

options may appear in any order but must be comma separated.

The are intended for passive mode.

config set gid: <gid> Changes GID to specified GID (snort -g).

config set uid: <uid> Sets UID to <id> (snort -u).

config show year Shows year in timestamps (snort -y).

config snaplen: <bytes> Set the snaplength of packet, same effect as -P <snaplen> or

--snaplen <snaplen> options.

config so rule memcap: <bytes> Set global memcap in bytes for so rules that dynamically allo-

cate memory for storing session data in the stream preproces-

sor. A value of 0 disables the memcap. Default is 0. Maximum

value is the maximum value an unsigned 32 bit integer can hold

which is 4294967295 or 4GB.

config stateful Sets assurance mode for stream (stream is established).

config tagged packet limit:

<max-tag>

When a metric other than packets is used in a tag option in

a rule, this option sets the maximum number of packets to be

tagged regardless of the amount defined by the other metric.

See Section 3.7.5 on using the tag option when writing rules

for more details. The default value when this option is not con-

figured is 256 packets. Setting this option to a value of 0 will

disable the packet limit.

config threshold: memcap <bytes> Set global memcap in bytes for thresholding. Default is

1048576 bytes (1 megabyte). (This is deprecated. Use config

event filter instead.)

config umask: <umask> Sets umask when running (snort -m).

config utc Uses UTC instead of local time for timestamps (snort -U).

config verbose Uses verbose logging to STDOUT (snort -v).

39

config vlan agnostic Causes Snort to ignore vlan headers for the purposes of con-

nection and frag tracking. This option is only valid in the base

configuration when using multiple configurations, and the de-

fault is off.

config address space agnostic Causes Snort to ignore DAQ address space ID for the purposes

of connection and frag tracking. This option is only valid in the

base configuration when using multiple configurations, and the

default is off.

config policy mode:

tap|inline|inline test

Sets the policy mode to either passive, inline or

inline test.

config disable replace Disables content replace option. Default behaviour is to replace

content.

config tunnel verdicts:

gtp|teredo|6in4|4in6

By default, whitelist and blacklist verdicts are handled inter-

nally by Snort for GTP, Teredo, 6in4 and 4in6 encapsulated traf-

fic. This means Snort actually gives the DAQ a pass or block

verdict instead. This is to workaround cases where the DAQ

would apply the verdict to the whole tunnel instead of the in-

dividual session within the tunnel. If your DAQ decodes GTP,

Teredo, 6in4 or 4in6 correctly, setting this config will allow the

whitelist or blacklist verdict to go to the DAQ. There is a mod-

est performance boost by doing this where possible since Snort

won’t see the remaining packets on the session.

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. They allow the functionality of Snort to be extended by allowing

users and programmers to drop modular plugins into Snort fairly easily. Preprocessor code is run before the detection

engine is called, but after the packet has been decoded. The packet can be modified or analyzed in an out-of-band

manner using this mechanism.

Preprocessors are loaded and configured using the preprocessor keyword. The format of the preprocessor directive

in the Snort config file is:

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmentation module for Snort. Frag3 is designed with the following

goals:

1. Fast execution with less complex data management.

2. Target-based host modeling anti-evasion techniques.

Frag3 uses the sfxhash data structure and linked lists for data handling internally which allows it to have much more

predictable and deterministic performance in any environment which should aid us in managing heavily fragmented

environments.

Target-based analysis is a relatively new concept in network-based intrusion detection. The idea of a target-based

system is to model the actual targets on the network instead of merely modeling the protocols and looking for attacks

within them. When IP stacks are written for different operating systems, they are usually implemented by people

who read the RFCs and then write their interpretation of what the RFC outlines into code. Unfortunately, there are

ambiguities in the way that the RFCs define some of the edge conditions that may occur and when this happens

different people implement certain aspects of their IP stacks differently. For an IDS this is a big problem.

40

In an environment where the attacker can determine what style of IP defragmentation is being used on a particular

target, the attacker can try to fragment packets such that the target will put them back together in a specific manner

while any passive systems trying to model the host traffic have to guess which way the target OS is going to handle the

overlaps and retransmits. As I like to say, if the attacker has more information about the targets on a network than the

IDS does, it is possible to evade the IDS. This is where the idea for “target-based IDS” came from. For more detail on

this issue and how it affects IDS, check out the famous Ptacek & Newsham paper at http://www.snort.org/docs/

idspaper/.

The basic idea behind target-based IDS is that we tell the IDS information about hosts on the network so that it can

avoid Ptacek & Newsham style evasion attacks based on information about how an individual target IP stack operates.

Vern Paxson and Umesh Shankar did a great paper on this very topic in 2003 that detailed mapping the hosts on a net-

work and determining how their various IP stack implementations handled the types of problems seen in IP defragmen-

tation and TCP stream reassembly. Check it out at http://www.icir.org/vern/papers/activemap-oak03.pdf.

We can also present the IDS with topology information to avoid TTL-based evasions and a variety of other issues, but

that’s a topic for another day. Once we have this information we can start to really change the game for these complex

modeling problems.

Frag3 was implemented to showcase and prototype a target-based module within Snort to test this idea.

Frag 3 Configuration

There are at least two preprocessor directives required to activate frag3, a global configuration directive and an engine

instantiation. There can be an arbitrary number of engines defined at startup with their own configuration, but only

one global configuration.

Global Configuration

• Preprocessor name: frag3 global

• Available options: NOTE: Global configuration options are comma separated.

– max frags <number> - Maximum simultaneous fragments to track. Default is 8192.

– memcap <bytes> - Memory cap for self preservation. Default is 4MB.

– prealloc memcap <bytes> - alternate memory management mode, use preallocated fragment nodes

based on a memory cap (faster in some situations).

– prealloc frags <number> - Alternate memory management mode, use preallocated fragment nodes

(faster in some situations).

– disabled - This optional keyword is allowed with any policy to avoid packet processing. This option

disables the preprocessor for this config, but not for other instances of multiple configurations. Use the

disable keyword in the base configuration to specify values for the options memcap, prealloc memcap,

and prealloc frags without having the preprocessor inspect traffic for traffic applying to the base con-

figuration. The other options are parsed but not used. Any valid configuration may have ”disabled” added

to it.

Engine Configuration

• Preprocessor name: frag3 engine

• Available options: NOTE: Engine configuration options are space separated.

– timeout <seconds> - Timeout for fragments. Fragments in the engine for longer than this period will

be automatically dropped. Default is 60 seconds.

– min ttl <value> - Minimum acceptable TTL value for a fragment packet. Default is 1. The accepted

range for this option is 1 - 255.

– detect anomalies - Detect fragment anomalies.

41

– bind to <ip list> - IP List to bind this engine to. This engine will only run for packets with destination

addresses contained within the IP List. Default value is all.

– overlap limit <number> - Limits the number of overlapping fragments per packet. The default is ”0”

(unlimited). This config option takes values equal to or greater than zero. This is an optional parameter.

detect anomalies option must be configured for this option to take effect.

– min fragment length <number> - Defines smallest fragment size (payload size) that should be consid-

ered valid. Fragments smaller than or equal to this limit are considered malicious and an event is raised,

if detect anomalies is also configured. The default is ”0” (unlimited), the minimum is ”0”. This is an

optional parameter. detect anomalies option must be configured for this option to take effect.

– policy <type> - Select a target-based defragmentation mode. Available types are first, last, bsd, bsd-

right, linux, windows and solaris. Default type is bsd.

The Paxson Active Mapping paper introduced the terminology frag3 is using to describe policy types. The

known mappings are as follows. Anyone who develops more mappings and would like to add to this list

please feel free to send us an email!

Platform Type

AIX 2 BSD

AIX 4.3 8.9.3 BSD

Cisco IOS Last

FreeBSD BSD

HP JetDirect (printer) BSD-right

HP-UX B.10.20 BSD

HP-UX 11.00 First

IRIX 4.0.5F BSD

IRIX 6.2 BSD

IRIX 6.3 BSD

IRIX64 6.4 BSD

Linux 2.2.10 linux

Linux 2.2.14-5.0 linux

Linux 2.2.16-3 linux

Linux 2.2.19-6.2.10smp linux

Linux 2.4.7-10 linux

Linux 2.4.9-31SGI 1.0.2smp linux

Linux 2.4 (RedHat 7.1-7.3) linux

MacOS (version unknown) First

NCD Thin Clients BSD

OpenBSD (version unknown) linux

OpenBSD (version unknown) linux

OpenVMS 7.1 BSD

OS/2 (version unknown) BSD

OSF1 V3.0 BSD

OSF1 V3.2 BSD

OSF1 V4.0,5.0,5.1 BSD

SunOS 4.1.4 BSD

SunOS 5.5.1,5.6,5.7,5.8 First

Tru64 Unix V5.0A,V5.1 BSD

Vax/VMS BSD

Windows (95/98/NT4/W2K/XP) Windows

Format

Note in the advanced configuration below that there are three engines specified running with Linux, first and last

policies assigned. The first two engines are bound to specific IP address ranges and the last one applies to all other

traffic. Packets that don’t fall within the address requirements of the first two engines automatically fall through to the

third one.

42

Basic Configuration

preprocessor frag3_global

preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192

preprocessor frag3_engine: policy linux bind_to 192.168.1.0/24

preprocessor frag3_engine: policy first bind_to [10.1.47.0/24,172.16.8.0/24]

preprocessor frag3_engine: policy last detect_anomalies

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anomalies. Its event output is packet-based so it will work with

all output modes of Snort. Read the documentation in the doc/signatures directory with filenames that begin with

“123-” for information on the different event types.

2.2.2 Session

The Session preprocessor is a global stream session management module for Snort. It is derived from the session

management functions that were part of the Stream5 preprocessor.

Since Session implements part of the functionality and API that was previously in Stream5 it cannot be used with

Stream5 but must be used in conjunction with the new Stream preprocessor. Similarly, due to the API changes, the

other preprocessors in Snort 2.9.7 work only with the new Session and Stream preprocessers.

Session API

Session provides an API to enable the creation and management of the session control block for a flow and the

management of data and state that may be associated with that flow by service and application preprocessors (most of

these functions were previously supported by the Stream5 API). These methods are called to identify sessions that may

be ignored (large data transfers, etc), and update the identifying information about the session (application protocol,

direction, etc) that can later be used by rules. API methods to enable preprocessors to register for dispatch for ports

and services for which they should be called to process the packet have been added to the Session API. Session is

required for the use of the ’flow’ and ’flowbits’ keywords.

Session Global Configuration

Global settings for the Session preprocessor.

preprocessor stream5_global: \

[track_tcp <yes|no>], [max_tcp <number>], \

[memcap <number bytes>], \

[track_udp <yes|no>], [max_udp <number>], \

[track_icmp <yes|no>], [max_icmp <number>], \

[track_ip <yes|no>], [max_ip <number>], \

[flush_on_alert], [show_rebuilt_packets], \

[prune_log_max <number bytes>], [disabled], \

[enable_ha]

43

Option Description

track tcp <yes|no> Track sessions for TCP. The default is ”yes”.

max tcp <num sessions> Maximum simultaneous TCP sessions tracked. The default is ”262144”, maxi-

mum is ”1048576”, minimum is ”2”.

memcap <num bytes> Memcap for TCP packet storage. The default is ”8388608” (8MB), maximum is

”1073741824” (1GB), minimum is ”32768” (32KB).

track udp <yes|no> Track sessions for UDP. The default is ”yes”.

max udp <num sessions> Maximum simultaneous UDP sessions tracked. The default is ”131072”, maxi-

mum is ”1048576”, minimum is ”1”.

track icmp <yes|no> Track sessions for ICMP. The default is ”no”.

max icmp <num sessions> Maximum simultaneous ICMP sessions tracked. The default is ”65536”, maxi-

mum is ”1048576”, minimum is ”1”.

track ip <yes|no> Track sessions for IP. The default is ”no”. Note that ”IP” includes all non-

TCP/UDP traffic over IP including ICMP if ICMP not otherwise configured.

max ip <num sessions> Maximum simultaneous IP sessions tracked. The default is ”16384”, maximum is

”1048576”, minimum is ”1”.

disabled Option to disable the stream5 tracking. By default this option is turned off. When

the preprocessor is disabled only the options memcap, max tcp, max udp and

max icmp are applied when specified with the configuration.

flush on alert Backwards compatibility. Flush a TCP stream when an alert is generated on that

stream. The default is set to off.

show rebuilt packets Print/display packet after rebuilt (for debugging). The default is set to off.

prune log max <num bytes> Print a message when a session terminates that was consuming more than the

specified number of bytes. The default is ”1048576” (1MB), minimum can be

either ”0” (disabled) or if not disabled the minimum is ”1024” and maximum is

”1073741824”.

enable ha Enable High Availability state sharing. The default is set to off.

Session HA Configuration

Configuration for HA session state sharing.

preprocessor stream5_ha: [min_session_lifetime <num millisecs>], \

[min_sync_interval <num millisecs>], [startup_input_file <filename>], \

[runtime_output_file <filename>], [use_side_channel]

Option Description

min session lifetime <num millisecs> Minimum session liftime in milliseconds. HA update messages will only be gen-

erated once a session has existed for at least this long. The default is 0, the mini-

mum is 0, and the maximum is 65535.

min sync interval <num millisecs> Minimum synchronization interval in milliseconds. HA update messages will not

be generated more often than once per interval on a given session. The default is

0, the minimum is 0, and the maximum is 65535.

startup input file <filename> The name of a file for snort to read HA messages from at startup.

runtime output file <filename> The name of a file to which Snort will write all HA messages that are generated

while it is running.

use side channel Indicates that all HA messages should also be sent to the side channel for process-

ing.

Example Configurations

1. This example configuration sets a maximum number of TCP session control blocks to 8192, enables tracking

of TCP and UPD sessions, and disables tracking of ICMP sessions. The number of UDP session control blocks

will be set to the compiled default.

44

preprocessor stream5_global: \

max_tcp 8192, track_tcp yes, track_udp yes, track_icmp no

preprocessor stream5_tcp: \

policy first, use_static_footprint_sizes

preprocessor stream5_udp: \

ignore_any_rules

2.2.3 Stream

The Stream preprocessor is a target-based TCP reassembly module for Snort. It is capable of tracking sessions for

both TCP and UDP.

Transport Protocols

TCP sessions are identified via the classic TCP ”connection”. UDP sessions are established as the result of a series of

UDP packets from two end points via the same set of ports. ICMP messages are tracked for the purposes of checking

for unreachable and service unavailable messages, which effectively terminate a TCP or UDP session.

Target-Based

Stream, like Frag3, introduces target-based actions for handling of overlapping data and other TCP anomalies. The

methods for handling overlapping data, TCP Timestamps, Data on SYN, FIN and Reset sequence numbers, etc. and

the policies supported by Stream are the results of extensive research with many target operating systems.

Stream API

Stream supports the modified Stream API that is now focused on functions specific to reassembly and protocol aware

flushing operations. Session management functions have been moved to the Session API. The remaining API functions

enable other protocol normalizers/preprocessors to dynamically configure reassembly behavior as required by the

application layer protocol.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, data received outside the TCP window, etc are configured via

the detect anomalies option to the TCP configuration. Some of these anomalies are detected on a per-target basis.

For example, a few operating systems allow data in TCP SYN packets, while others do not.

Protocol Aware Flushing

Protocol aware flushing of HTTP, SMB and DCE/RPC can be enabled with this option:

config paf_max: <max-pdu>

where <max-pdu> is between zero (off) and 63780. This allows Snort to statefully scan a stream and reassemble a

complete PDU regardless of segmentation. For example, multiple PDUs within a single TCP segment, as well as one

PDU spanning multiple TCP segments will be reassembled into one PDU per packet for each PDU. PDUs larger than

the configured maximum will be split into multiple packets.

45

Stream TCP Configuration

Provides a means on a per IP address target to configure TCP policy. This can have multiple occurrences, per policy

that is bound to an IP address or network. One default policy must be specified, and that policy is not bound to an IP

address or network.

preprocessor stream5_tcp: \

[log_asymmetric_traffic <yes|no>], \

[bind_to <ip_addr>], \

[timeout <number secs>], [policy <policy_id>], \

[overlap_limit <number>], [max_window <number>], \

[require_3whs [<number secs>]], [detect_anomalies], \

[check_session_hijacking], [use_static_footprint_sizes], \

[dont_store_large_packets], [dont_reassemble_async], \

[max_queued_bytes <bytes>], [max_queued_segs <number segs>], \

[small_segments <number> bytes <number> [ignore_ports number [number]*]], \

[ports <client|server|both> <all|number|!number [number]* [!number]*>], \

[protocol <client|server|both> <all|service name [service name]*>], \

[ignore_any_rules], [flush_factor <number segs>]

Option Description

bind to <ip addr> IP address or network for this policy. The default is set to any.

timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and the maxi-

mum is ”86400” (approximately 1 day).

policy <policy id> The Operating System policy for the target OS. The policy id can be one

of the following:

Policy Name Operating Systems.

first Favor first overlapped segment.

last Favor last overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x and

newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows

95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

overlap limit <number> Limits the number of overlapping packets per session. The default is ”0”

(unlimited), the minimum is ”0”, and the maximum is ”255”.

max window <number> Maximum TCP window allowed. The default is ”0” (unlimited), the

minimum is ”0”, and the maximum is ”1073725440” (65535 left shift

14). That is the highest possible TCP window per RFCs. This option is

intended to prevent a DoS against Stream by an attacker using an abnor-

mally large window, so using a value near the maximum is discouraged.

require 3whs [<number

seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/ACK hand-

shake. The default is set to off. The optional number of seconds speci-

fies a startup timeout. This allows a grace period for existing sessions to

be considered established during that interval immediately after Snort is

started. The default is ”0” (don’t consider existing sessions established),

the minimum is ”0”, and the maximum is ”86400” (approximately 1

day).

46

detect anomalies Detect and alert on TCP protocol anomalies. The default is set to off.

check session hijacking Check for TCP session hijacking. This check validates the hardware

(MAC) address from both sides of the connect – as established on the

3-way handshake against subsequent packets received on the session. If

an ethernet layer is not part of the protocol stack received by Snort, there

are no checks performed. Alerts are generated (per ’detect anomalies’

option) for either the client or server when the MAC address for one side

or the other does not match. The default is set to off.

use static footprint sizes Use static values for determining when to build a reassembled packet to

allow for repeatable tests. This option should not be used production

environments. The default is set to off.

dont store large packets Performance improvement to not queue large packets in reassembly

buffer. The default is set to off. Using this option may result in missed

attacks.

dont reassemble async Don’t queue packets for reassembly if traffic has not been seen in both

directions. The default is set to queue packets.

max queued bytes <bytes> Limit the number of bytes queued for reassembly on a given TCP session

to bytes. Default is ”1048576” (1MB). A value of ”0” means unlimited,

with a non-zero minimum of ”1024”, and a maximum of ”1073741824”

(1GB). A message is written to console/syslog when this limit is en-

forced.

max queued segs <num> Limit the number of segments queued for reassembly on a given TCP

session. The default is ”2621”, derived based on an average size of 400

bytes. A value of ”0” means unlimited, with a non-zero minimum of

”2”, and a maximum of ”1073741824” (1GB). A message is written to

console/syslog when this limit is enforced.

small segments <number>

bytes <number> [ignore ports

<number(s)>]

Configure the maximum small segments queued. This feature requires

that detect anomalies be enabled. The first number is the number of con-

secutive segments that will trigger the detection rule. The default value

is ”0” (disabled), with a maximum of ”2048”. The second number is

the minimum bytes for a segment to be considered ”small”. The default

value is ”0” (disabled), with a maximum of ”2048”. ignore ports is op-

tional, defines the list of ports in which will be ignored for this rule. The

number of ports can be up to ”65535”. A message is written to con-

sole/syslog when this limit is enforced.

ports <client|server|both>

<all|number(s)|!number(s)>

Specify the client, server, or both and list of ports in which to perform

reassembly. This can appear more than once in a given config. The de-

fault settings are ports client 21 23 25 42 53 80 110 111 135

136 137 139 143 445 513 514 1433 1521 2401 3306. The mini-

mum port allowed is ”1” and the maximum allowed is ”65535”. To dis-

able reassembly for a port specifiy the port number preceeded by an ’!’,

e.g. !8080 !25

protocol

<client|server|both>

<all|service name(s)>

Specify the client, server, or both and list of services in which to perform

reassembly. This can appear more than once in a given config. The

default settings are ports client ftp telnet smtp nameserver

dns http pop3 sunrpc dcerpc netbios-ssn imap login shell

mssql oracle cvs mysql. The service names can be any of those

used in the host attribute table (see 2.7), including any of the internal

defaults (see 2.7.5) or others specific to the network.

ignore any rules Don’t process any -> any (ports) rules for TCP that attempt to match

payload if there are no port specific rules for the src or destination port.

Rules that have flow or flowbits will never be ignored. This is a perfor-

mance improvement and may result in missed attacks. Using this does

not affect rules that look at protocol headers, only those with content,

PCRE, or byte test options. The default is ”off”. This option can be used

only in default policy.

47

flush factor Useful in ips mode to flush upon seeing a drop in segment size after N

segments of non-decreasing size. The drop in size often indicates an end

of request or response.

△!
NOTE

If no options are specified for a given TCP policy, that is the default TCP policy. If only a bind to option is

used with no other options that TCP policy uses all of the default values.

Stream UDP Configuration

Configuration for UDP session tracking. Since there is no target based binding, there should be only one occurrence

of the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [ignore_any_rules]

Option Description

timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and the maximum is

”86400” (approximately 1 day).

ignore any rules Don’t process any -> any (ports) rules for UDP that attempt to match payload

if there are no port specific rules for the src or destination port. Rules that have

flow or flowbits will never be ignored. This is a performance improvement and

may result in missed attacks. Using this does not affect rules that look at protocol

headers, only those with content, PCRE, or byte test options. The default is ”off”.

△!
NOTE

With the ignore any rules option, a UDP rule will be ignored except when there is another port specific rule

that may be applied to the traffic. For example, if a UDP rule specifies destination port 53, the ’ignored’ any

-> any rule will be applied to traffic to/from port 53, but NOT to any other source or destination port. A list

of rule SIDs affected by this option are printed at Snort’s startup.

△!
NOTE

With the ignore any rules option, if a UDP rule that uses any -> any ports includes either flow or flowbits,

the ignore any rules option is effectively pointless. Because of the potential impact of disabling a flowbits

rule, the ignore any rules option will be disabled in this case.

Stream ICMP Configuration

Configuration for ICMP session tracking. Since there is no target based binding, there should be only one occurrence

of the ICMP configuration.

△!
NOTE

ICMP is currently untested, in minimal code form and is NOT ready for use in production networks. It is not

turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option Description

timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and the maximum is

”86400” (approximately 1 day).

48

Stream IP Configuration

Configuration for IP session tracking. Since there is no target based binding, there should be only one occurrence of

the IP configuration.

△!
NOTE

”IP” includes all non-TCP/UDP traffic over IP including ICMP if ICMP not otherwise configured. It is not

turned on by default.

preprocessor stream5_ip: [timeout <number secs>]

Option Description

timeout <num seconds> Session timeout. The default is ”30”, the minimum is ”1”, and the maximum is

”86400” (approximately 1 day).

Example Configurations

1. This example configuration is the default configuration in snort.conf and can be used for repeatable tests of

stream reassembly in readback mode.

preprocessor stream5_global: \

max_tcp 8192, track_tcp yes, track_udp yes, track_icmp no

preprocessor stream5_tcp: \

policy first, use_static_footprint_sizes

preprocessor stream5_udp: \

ignore_any_rules

2. This configuration maps two network segments to different OS policies, one for Windows and one for Linux,

with all other traffic going to the default policy of Solaris.

preprocessor stream5_global: track_tcp yes

preprocessor stream5_tcp: bind_to 192.168.1.0/24, policy windows

preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy linux

preprocessor stream5_tcp: policy solaris

2.2.4 sfPortscan

The sfPortscan module, developed by Sourcefire, is designed to detect the first phase in a network attack: Recon-

naissance. In the Reconnaissance phase, an attacker determines what types of network protocols or services a host

supports. This is the traditional place where a portscan takes place. This phase assumes the attacking host has no prior

knowledge of what protocols or services are supported by the target; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its intended target, most queries sent by the attacker will be negative

(meaning that the service ports are closed). In the nature of legitimate network communications, negative responses

from hosts are rare, and rarer still are multiple negative responses within a given amount of time. Our primary objective

in detecting portscans is to detect and track these negative responses.

One of the most common portscanning tools in use today is Nmap. Nmap encompasses many, if not all, of the current

portscanning techniques. sfPortscan was designed to be able to detect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types of Nmap scans:

• TCP Portscan

49

• UDP Portscan

• IP Portscan

These alerts are for one→one portscans, which are the traditional types of scans; one host scans multiple ports on

another host. Most of the port queries will be negative, since most hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy portscans:

• TCP Decoy Portscan

• UDP Decoy Portscan

• IP Decoy Portscan

Decoy portscans are much like the Nmap portscans described above, only the attacker has a spoofed source address

inter-mixed with the real scanning address. This tactic helps hide the true identity of the attacker.

sfPortscan alerts for the following types of distributed portscans:

• TCP Distributed Portscan

• UDP Distributed Portscan

• IP Distributed Portscan

These are many→one portscans. Distributed portscans occur when multiple hosts query one host for open services.

This is used to evade an IDS and obfuscate command and control hosts.

△!
NOTE

Negative queries will be distributed among scanning hosts, so we track this type of scan through the scanned

host.

sfPortscan alerts for the following types of portsweeps:

• TCP Portsweep

• UDP Portsweep

• IP Portsweep

• ICMP Portsweep

These alerts are for one→many portsweeps. One host scans a single port on multiple hosts. This usually occurs when

a new exploit comes out and the attacker is looking for a specific service.

△!
NOTE

The characteristics of a portsweep scan may not result in many negative responses. For example, if an attacker

portsweeps a web farm for port 80, we will most likely not see many negative responses.

sfPortscan alerts on the following filtered portscans and portsweeps:

• TCP Filtered Portscan

• UDP Filtered Portscan

• IP Filtered Portscan

50

• TCP Filtered Decoy Portscan

• UDP Filtered Decoy Portscan

• IP Filtered Decoy Portscan

• TCP Filtered Portsweep

• UDP Filtered Portsweep

• IP Filtered Portsweep

• ICMP Filtered Portsweep

• TCP Filtered Distributed Portscan

• UDP Filtered Distributed Portscan

• IP Filtered Distributed Portscan

“Filtered” alerts indicate that there were no network errors (ICMP unreachables or TCP RSTs) or responses on closed

ports have been suppressed. It’s also a good indicator of whether the alert is just a very active legitimate host. Active

hosts, such as NATs, can trigger these alerts because they can send out many connection attempts within a very small

amount of time. A filtered alert may go off before responses from the remote hosts are received.

sfPortscan only generates one alert for each host pair in question during the time window (more on windows below).

On TCP scan alerts, sfPortscan will also display any open ports that were scanned. On TCP sweep alerts however,

sfPortscan will only track open ports after the alert has been triggered. Open port events are not individual alerts, but

tags based on the original scan alert.

sfPortscan Configuration

Use of the Stream preprocessor is required for sfPortscan. Stream gives portscan direction in the case of connectionless

protocols like ICMP and UDP. You should enable the Stream preprocessor in your snort.conf, as described in Section

2.2.3.

The parameters you can use to configure the portscan module are:

1. proto <protocol>

Available options:

• TCP

• UDP

• ICMP

• ip proto

• all

2. scan type <scan type>

Available options:

• portscan

• portsweep

• decoy portscan

• distributed portscan

• all

3. sense level <level>

Available options:

51

• low - “Low” alerts are only generated on error packets sent from the target host, and because of the nature

of error responses, this setting should see very few false positives. However, this setting will never trigger

a Filtered Scan alert because of a lack of error responses. This setting is based on a static time window of

60 seconds, after which this window is reset.

• medium - “Medium” alerts track connection counts, and so will generate filtered scan alerts. This setting

may false positive on active hosts (NATs, proxies, DNS caches, etc), so the user may need to deploy the

use of Ignore directives to properly tune this directive.

• high - “High” alerts continuously track hosts on a network using a time window to evaluate portscan

statistics for that host. A ”High” setting will catch some slow scans because of the continuous monitoring,

but is very sensitive to active hosts. This most definitely will require the user to tune sfPortscan.

4. watch ip <ip1|ip2/cidr[[port|port2-port3]]>

Defines which IPs, networks, and specific ports on those hosts to watch. The list is a comma separated list of

IP addresses, IP address using CIDR notation. Optionally, ports are specified after the IP address/CIDR using a

space and can be either a single port or a range denoted by a dash. IPs or networks not falling into this range are

ignored if this option is used.

5. ignore scanners <ip1|ip2/cidr[[port|port2-port3]]>

Ignores the source of scan alerts. The parameter is the same format as that of watch ip.

6. ignore scanned <ip1|ip2/cidr[[port|port2-port3]]>

Ignores the destination of scan alerts. The parameter is the same format as that of watch ip.

7. logfile <file>

This option will output portscan events to the file specified. If file does not contain a leading slash, this file

will be placed in the Snort config dir.

8. include midstream

This option will include sessions picked up in midstream by Stream. This can lead to false alerts, especially

under heavy load with dropped packets; which is why the option is off by default.

9. detect ack scans

This option will include sessions picked up in midstream by the stream module, which is necessary to detect

ACK scans. However, this can lead to false alerts, especially under heavy load with dropped packets; which is

why the option is off by default.

10. disabled

This optional keyword is allowed with any policy to avoid packet processing. This option disables the preproces-

sor. When the preprocessor is disabled only the memcap option is applied when specified with the configuration.

The other options are parsed but not used. Any valid configuration may have ”disabled” added to it.

Format

preprocessor sfportscan: proto <protocols> \

scan_type <portscan|portsweep|decoy_portscan|distributed_portscan|all> \

sense_level <low|medium|high> \

watch_ip <IP or IP/CIDR> \

ignore_scanners <IP list> \

ignore_scanned <IP list> \

logfile <path and filename> \

disabled

52

Example

preprocessor flow: stats_interval 0 hash 2

preprocessor sfportscan:\

proto { all } \

scan_type { all } \

sense_level { low }

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with the alert, snort generates a pseudo-packet

and uses the payload portion to store the additional portscan information of priority count, connection count, IP count,

port count, IP range, and port range. The characteristics of the packet are:

Src/Dst MAC Addr == MACDAD

IP Protocol == 255

IP TTL == 0

Other than that, the packet looks like the IP portion of the packet that caused the portscan alert to be generated. This

includes any IP options, etc. The payload and payload size of the packet are equal to the length of the additional

portscan information that is logged. The size tends to be around 100 - 200 bytes.

Open port alerts differ from the other portscan alerts, because open port alerts utilize the tagged packet output system.

This means that if an output system that doesn’t print tagged packets is used, then the user won’t see open port alerts.

The open port information is stored in the IP payload and contains the port that is open.

The sfPortscan alert output was designed to work with unified2 packet logging, so it is possible to extend favorite Snort

GUIs to display portscan alerts and the additional information in the IP payload using the above packet characteristics.

Log File Output Log file output is displayed in the following format, and explained further below:

Time: 09/08-15:07:31.603880

event_id: 2

192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Portscan

Priority Count: 0

Connection Count: 200

IP Count: 2

Scanner IP Range: 192.168.169.3:192.168.169.4

Port/Proto Count: 200

Port/Proto Range: 20:47557

If there are open ports on the target, one or more additional tagged packet(s) will be appended:

Time: 09/08-15:07:31.603881

event_ref: 2

192.168.169.3 -> 192.168.169.5 (portscan) Open Port

Open Port: 38458

1. Event id/Event ref

These fields are used to link an alert with the corresponding Open Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). The higher the priority count, the more

bad responses have been received.

53

3. Connection Count

Connection Count lists how many connections are active on the hosts (src or dst). This is accurate for

connection-based protocols, and is more of an estimate for others. Whether or not a portscan was filtered is

determined here. High connection count and low priority count would indicate filtered (no response received

from target).

4. IP Count

IP Count keeps track of the last IP to contact a host, and increments the count if the next IP is different. For

one-to-one scans, this is a low number. For active hosts this number will be high regardless, and one-to-one

scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portsweep (one-to-many) scans display the scanned IP range;

Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and increments this number when that changes. We use this

count (along with IP Count) to determine the difference between one-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tuning the detection engine for your network(s). Here are some

tuning tips:

1. Use the watch ip, ignore scanners, and ignore scanned options.

It’s important to correctly set these options. The watch ip option is easy to understand. The analyst should set

this option to the list of CIDR blocks and IPs that they want to watch. If no watch ip is defined, sfPortscan will

watch all network traffic.

The ignore scanners and ignore scanned options come into play in weeding out legitimate hosts that are

very active on your network. Some of the most common examples are NAT IPs, DNS cache servers, syslog

servers, and nfs servers. sfPortscan may not generate false positives for these types of hosts, but be aware when

first tuning sfPortscan for these IPs. Depending on the type of alert that the host generates, the analyst will know

which to ignore it as. If the host is generating portsweep events, then add it to the ignore scanners option.

If the host is generating portscan alerts (and is the host that is being scanned), add it to the ignore scanned

option.

2. Filtered scan alerts are much more prone to false positives.

When determining false positives, the alert type is very important. Most of the false positives that sfPortscan

may generate are of the filtered scan alert type. So be much more suspicious of filtered portscans. Many times

this just indicates that a host was very active during the time period in question. If the host continually generates

these types of alerts, add it to the ignore scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count, Port Count, IP Range, and Port Range to

determine false positives.

The portscan alert details are vital in determining the scope of a portscan and also the confidence of the portscan.

In the future, we hope to automate much of this analysis in assigning a scope level and confidence level, but

for now the user must manually do this. The easiest way to determine false positives is through simple ratio

estimations. The following is a list of ratios to estimate and the associated values that indicate a legitimate scan

and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connections per IP. For portscans,

this ratio should be high, the higher the better. For portsweeps, this ratio should be low.

Port Count / IP Count: This ratio indicates an estimated average of ports connected to per IP. For portscans, this

ratio should be high and indicates that the scanned host’s ports were connected to by fewer IPs. For portsweeps,

this ratio should be low, indicating that the scanning host connected to few ports but on many hosts.

54

Connection Count / Port Count: This ratio indicates an estimated average of connections per port. For

portscans, this ratio should be low. This indicates that each connection was to a different port. For portsweeps,

this ratio should be high. This indicates that there were many connections to the same port.

The reason that Priority Count is not included, is because the priority count is included in the connection

count and the above comparisons take that into consideration. The Priority Count play an important role in

tuning because the higher the priority count the more likely it is a real portscan or portsweep (unless the host is

firewalled).

4. If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyst doesn’t have the time for tuning, lower the sensitivity

level. You get the best protection the higher the sensitivity level, but it’s also important that the portscan detection

engine generate alerts that the analyst will find informative. The low sensitivity level only generates alerts based

on error responses. These responses indicate a portscan and the alerts generated by the low sensitivity level are

highly accurate and require the least tuning. The low sensitivity level does not catch filtered scans; since these

are more prone to false positives.

2.2.5 RPC Decode

The rpc decode preprocessor normalizes RPC multiple fragmented records into a single un-fragmented record. It does

this by normalizing the packet into the packet buffer. If stream5 is enabled, it will only process client-side traffic. By

default, it runs against traffic on ports 111 and 32771.

Format

preprocessor rpc_decode: \

<ports> [alert_fragments] \

[no_alert_multiple_requests] \

[no_alert_large_fragments] \

[no_alert_incomplete]

Option Description

alert fragments Alert on any fragmented RPC record.

no alert multiple requests Don’t alert when there are multiple records in one packet.

no alert large fragments Don’t alert when the sum of fragmented records exceeds one packet.

no alert incomplete Don’t alert when a single fragment record exceeds the size of one packet.

2.2.6 Performance Monitor

This preprocessor measures Snort’s real-time and theoretical maximum performance. Whenever this preprocessor is

turned on, it should have an output mode enabled, either “console” which prints statistics to the console window or

“file” with a file name, where statistics get printed to the specified file name. By default, Snort’s real-time statistics

are processed. This includes:

• Time Stamp

• Drop Rate

• Mbits/Sec (wire) [duplicated below for easy comparison with other rates]

• Alerts/Sec

• K-Pkts/Sec (wire) [duplicated below for easy comparison with other rates]

• Avg Bytes/Pkt (wire) [duplicated below for easy comparison with other rates]

55

• Pat-Matched [percent of data received that Snort processes in pattern matching]

• Syns/Sec

• SynAcks/Sec

• New Sessions Cached/Sec

• Sessions Del fr Cache/Sec

• Current Cached Sessions

• Max Cached Sessions

• Stream Flushes/Sec

• Stream Session Cache Faults

• Stream Session Cache Timeouts

• New Frag Trackers/Sec

• Frag-Completes/Sec

• Frag-Inserts/Sec

• Frag-Deletes/Sec

• Frag-Auto Deletes/Sec [memory DoS protection]

• Frag-Flushes/Sec

• Frag-Current [number of current Frag Trackers]

• Frag-Max [max number of Frag Trackers at any time]

• Frag-Timeouts

• Frag-Faults

• Number of CPUs [*** Only if compiled with LINUX SMP ***, the next three appear for each CPU]

• CPU usage (user)

• CPU usage (sys)

• CPU usage (Idle)

• Mbits/Sec (wire) [average mbits of total traffic]

• Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

• Mbits/Sec (ipreass) [average mbits Snort injects after IP reassembly]

• Mbits/Sec (tcprebuilt) [average mbits Snort injects after TCP reassembly]

• Mbits/Sec (applayer) [average mbits seen by rules and protocol decoders]

• Avg Bytes/Pkt (wire)

• Avg Bytes/Pkt (ipfrag)

• Avg Bytes/Pkt (ipreass)

• Avg Bytes/Pkt (tcprebuilt)

• Avg Bytes/Pkt (applayer)

• K-Pkts/Sec (wire)

56

• K-Pkts/Sec (ipfrag)

• K-Pkts/Sec (ipreass)

• K-Pkts/Sec (tcprebuilt)

• K-Pkts/Sec (applayer)

• Total Packets Received

• Total Packets Dropped (not processed)

• Total Packets Blocked (inline)

• Percentage of Packets Dropped

• Total Filtered TCP Packets

• Total Filtered UDP Packets

• Midstream TCP Sessions/Sec

• Closed TCP Sessions/Sec

• Pruned TCP Sessions/Sec

• TimedOut TCP Sessions/Sec

• Dropped Async TCP Sessions/Sec

• TCP Sessions Initializing

• TCP Sessions Established

• TCP Sessions Closing

• Max TCP Sessions (interval)

• New Cached UDP Sessions/Sec

• Cached UDP Ssns Del/Sec

• Current Cached UDP Sessions

• Max Cached UDP Sessions

• Current Attribute Table Hosts (Target Based)

• Attribute Table Reloads (Target Based)

• Mbits/Sec (Snort)

• Mbits/Sec (sniffing)

• Mbits/Sec (combined)

• uSeconds/Pkt (Snort)

• uSeconds/Pkt (sniffing)

• uSeconds/Pkt (combined)

• KPkts/Sec (Snort)

• KPkts/Sec (sniffing)

• KPkts/Sec (combined)

57

There are over 100 individual statistics included. A header line is output at startup and rollover that labels each column.

The following options can be used with the performance monitor:

• flow - Prints out statistics about the type and amount of traffic and protocol distributions that Snort is seeing.

This option can produce large amounts of output.

• flow-file - Prints flow statistics in a comma-delimited format to the file that is specified.

– Timestamp

– Total % TCP bytes

– Total % UDP bytes

– Total % ICMP bytes

– Total % OTHER bytes

– Number of Packet length entries

– Packet length entries - bytes,%total

– Number of TCP port flow entries

– TCP port flow entries : port,%total,%src,%dst

– % TCP high port to high port

– Number of UDP port flow entries

– UDP port flow entries : port,%total,%src,%dst

– % UDP high port to high port

– Number of ICMP type entries

– ICMP type entries : type,%total

Specifying this option implicitly enables flow statistics.

• events - Turns on event reporting. This prints out statistics as to the number of rules that were evaluated and

didn’t match (non-qualified events) vs. the number of rules that were evaluated and matched (qualified events).

A high non-qualified event to qualified event ratio can indicate there are many rules with either minimal content

or no content that are being evaluated without success. The fast pattern matcher is used to select a set of rules for

evaluation based on the longest content or a content modified with the fast pattern rule option in a rule.

Rules with short, generic contents are more likely to be selected for evaluation than those with longer, more

unique contents. Rules without content are not filtered via the fast pattern matcher and are always evaluated,

so if possible, adding a content rule option to those rules can decrease the number of times they need to be

evaluated and improve performance.

• max - Turns on the theoretical maximum performance that Snort calculates given the processor speed and current

performance. This is only valid for uniprocessor machines, since many operating systems don’t keep accurate

kernel statistics for multiple CPUs.

• console - Prints statistics at the console.

• file - Prints statistics in a comma-delimited format to the file that is specified. Not all statistics are output to

this file. You may also use snortfile which will output into your defined Snort log directory. Both of these

directives can be overridden on the command line with the -Z or --perfmon-file options. At startup, Snort

will log a distinctive line to this file with a timestamp to all readers to easily identify gaps in the stats caused by

Snort not running.

• pktcnt - Adjusts the number of packets to process before checking for the time sample. This boosts perfor-

mance, since checking the time sample reduces Snort’s performance. By default, this is 10000.

• time - Represents the number of seconds between intervals.

• accumulate or reset - Defines which type of drop statistics are kept by the operating system. By default,

reset is used.

58

• atexitonly - Dump stats for entire life of Snort. One or more of the following arguments can be given to

specify specific statistic types to dump at exit:

– base-stats

– flow-stats

– flow-ip-stats

– events-stats

Without any arguments, all enabled stats will be dumped only when Snort exits.

• max file size - Defines the maximum size of the comma-delimited file. Before the file exceeds this size, it

will be rolled into a new date stamped file of the format YYYY-MM-DD, followed by YYYY-MM-DD.x, where

x will be incremented each time the comma delimited file is rolled over. The minimum is 4096 bytes and the

maximum is 2147483648 bytes (2GB). The default is the same as the maximum.

• flow-ip - Collects IP traffic distribution statistics based on host pairs. For each pair of hosts for which IP traffic

has been seen, the following statistics are collected for both directions (A to B and B to A):

– TCP Packets

– TCP Traffic in Bytes

– TCP Sessions Established

– TCP Sessions Closed

– UDP Packets

– UDP Traffic in Bytes

– UDP Sessions Created

– Other IP Packets

– Other IP Traffic in Bytes

These statistics are printed and reset at the end of each interval.

• flow-ip-file - Prints the flow IP statistics in a comma-delimited format to the file that is specified. All of the

statistics mentioned above, as well as the IP addresses of the host pairs in human-readable format, are included.

Each line in the file will have its values correspond (in order) to those below:

– IP Address A (String)

– IP Address B (String)

– TCP Packets from A to B

– TCP Traffic in Bytes from A to B

– TCP Packets from B to A

– TCP Traffic in Bytes from B to A

– UDP Packets from A to B

– UDP Traffic in Bytes from A to B

– UDP Packets from B to A

– UDP Traffic in Bytes from B to A

– Other IP Packets from A to B

– Other IP Traffic in Bytes from A to B

– Other IP Packets from B to A

– Other IP Traffic in Bytes from B to A

– TCP Sessions Established

– TCP Sessions Closed

– UDP Sessions Created

• flow-ip-memcap - Sets the memory cap on the hash table used to store IP traffic statistics for host pairs. Once

the cap has been reached, the table will start to prune the statistics for the least recently seen host pairs to free

memory. This value is in bytes and the default value is 52428800 (50MB).

59

Examples

preprocessor perfmonitor: \

time 30 events flow file stats.profile max console pktcnt 10000

preprocessor perfmonitor: \

time 300 file /var/tmp/snortstat pktcnt 10000

preprocessor perfmonitor: \

time 30 flow-ip flow-ip-file flow-ip-stats.csv pktcnt 1000

preprocessor perfmonitor: \

time 30 pktcnt 1000 snortfile base.csv flow-file flows.csv atexitonly flow-stats

preprocessor perfmonitor: \

time 30 pktcnt 1000 flow events atexitonly base-stats flow-stats console

2.2.7 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applications. Given a data buffer, HTTP Inspect will decode the

buffer, find HTTP fields, and normalize the fields. HTTP Inspect works on both client requests and server responses.

HTTP Inspect has a very “rich” user configuration. Users can configure individual HTTP servers with a variety of

options, which should allow the user to emulate any type of web server. Within HTTP Inspect, there are two areas of

configuration: global and server.

Global Configuration

The global configuration deals with configuration options that determine the global functioning of HTTP Inspect. The

following example gives the generic global configuration format:

Format

preprocessor http_inspect: \

global \

iis_unicode_map <map_filename> \

codemap <integer> \

[detect_anomalous_servers] \

[proxy_alert] \

[max_gzip_mem <num>] \

[compress_depth <num>] [decompress_depth <num>] \

[memcap <num>] \

disabled

You can only have a single global configuration, you’ll get an error if you try otherwise.

Configuration

1. iis unicode map <map filename> [codemap <integer>]

This is the global iis unicode map file. The iis unicode map is a required configuration parameter. The map

file can reside in the same directory as snort.conf or be specified via a fully-qualified path to the map file.

The iis unicode map file is a Unicode codepoint map which tells HTTP Inspect which codepage to use when

decoding Unicode characters. For US servers, the codemap is usually 1252.

60

A Microsoft US Unicode codepoint map is provided in the Snort source etc directory by default. It is called

unicode.map and should be used if no other codepoint map is available. A tool is supplied with Snort to

generate custom Unicode maps--ms unicode generator.c, which is available at http://www.snort.org/

dl/contrib/.

△!
NOTE

Remember that this configuration is for the global IIS Unicode map, individual servers can reference their

own IIS Unicode map.

2. detect anomalous servers

This global configuration option enables generic HTTP server traffic inspection on non-HTTP configured ports,

and alerts if HTTP traffic is seen. Don’t turn this on if you don’t have a default server configuration that

encompasses all of the HTTP server ports that your users might access. In the future, we want to limit this to

specific networks so it’s more useful, but for right now, this inspects all network traffic. This option is turned off

by default.

3. proxy alert

This enables global alerting on HTTP server proxy usage. By configuring HTTP Inspect servers and enabling

allow proxy use, you will only receive proxy use alerts for web users that aren’t using the configured proxies

or are using a rogue proxy server.

Please note that if users aren’t required to configure web proxy use, then you may get a lot of proxy alerts. So,

please only use this feature with traditional proxy environments. Blind firewall proxies don’t count.

4. compress depth <integer> This option specifies the maximum amount of packet payload to decompress.

This value can be set from 1 to 65535. The default for this option is 1460.

△!
NOTE

Please note, in case of multiple policies, the value specified in the default policy is used and this value

overwrites the values specified in the other policies. In case of unlimited decompress this should be set to

its max value. This value should be specified in the default policy even when the HTTP inspect preprocessor

is turned off using the disabled keyword.

5. decompress depth <integer> This option specifies the maximum amount of decompressed data to obtain

from the compressed packet payload. This value can be set from 1 to 65535. The default for this option is 2920.

△!
NOTE

Please note, in case of multiple policies, the value specified in the default policy is used and this value

overwrites the values specified in the other policies. In case of unlimited decompress this should be set to

its max value. This value should be specified in the default policy even when the HTTP inspect preprocessor

is turned off using the disabled keyword.

6. max gzip mem <integer>

This option determines (in bytes) the maximum amount of memory the HTTP Inspect preprocessor will use for

decompression. The minimum allowed value for this option is 3276 bytes. This option determines the number of

concurrent sessions that can be decompressed at any given instant. The default value for this option is 838860.

This value is also used for the optional SWF/PDF file decompression. If these modes are enabled this same

value sets the maximum about of memory used for file decompression session state information.

△!
NOTE

This value should be specified in the default policy even when the HTTP inspect preprocessor is turned off

using the disabled keyword.

61

7. memcap <integer>

This option determines (in bytes) the maximum amount of memory the HTTP Inspect preprocessor will use for

logging the URI and Hostname data. This value can be set from 2304 to 603979776 (576 MB). This option

along with the maximum uri and hostname logging size (which is defined in snort) will determine the maximum

HTTP sessions that will log the URI and hostname data at any given instant. The maximum size for logging

URI data is 2048 and for hostname is 256. The default value for this option is 150994944 (144 MB).

△!
NOTE

This value should be specified in the default policy even when the HTTP inspect preprocessor is turned off

using the disabled keyword. In case of multiple policies, the value specified in the default policy will

overwrite the value specified in other policies.

max http sessions logged = memcap /(max uri logging size + max hostname logging size) max uri logging

size defined in snort : 2048 max hostname logging size defined in snort : 256

8. normalize random nulls in text

This option normalizes the text content with randomly encoded null bytes in 16LE,16BE,32LE and 32BE UTF

encodings to UTF8 in the server response. It relies on file preprocessor to determine if the content is text. Hence

file preprocessor should be enabled and configured with prepackaged file magics wihtout which this option is

not effective.

△!
NOTE

This opton relies on file prepreprocessor to determine if content can safely be considered as text before

normalizing. However, it is possible that non text file types unknown to file preprocessor may get normalized

as this option treats file types unknown to file preprocessor as text. Such cases may result in false positives

or false negatives in detection.

9. fast blocking

This option enables inspecting http data before the data is flushed. This enables early IPS rule evaluation so that

the block rules will take into effect and the connection is blocked at the earliest instead of blocking later after

flushing the data. This config will be effective only when inline normalisation is enabled.

10. disabled

This optional keyword is allowed with any policy to avoid packet processing. This option disables the pre-

processor. When the preprocessor is disabled only the ”memcap”, ”max gzip mem”, ”compress depth” and

”decompress depth” options are applied when specified with the configuration. Other options are parsed but not

used. Any valid configuration may have ”disabled” added to it.

Example Global Configuration

preprocessor http_inspect: \

global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default and by IP address.

Default This configuration supplies the default server configuration for any server that is not individually configured.

Most of your web servers will most likely end up using the default configuration.

62

Example Default Configuration

preprocessor http_inspect_server: \

server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs

can be configured.

Example IP Configuration

preprocessor http_inspect_server: \

server 10.1.1.1 profile all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Address”, the only

difference being that multiple IPs can be specified via a space separated list. There is a limit of 40 IP addresses or

CIDR notations per http inspect server line.

Example Multiple IP Configuration

preprocessor http_inspect_server: \

server { 10.1.1.1 10.2.2.0/24 } profile all ports { 80 }

Server Configuration Options

Important: Some configuration options have an argument of ‘yes’ or ‘no’. This argument specifies whether the user

wants the configuration option to generate an HTTP Inspect alert or not. The ‘yes/no’ argument does not specify

whether the configuration option itself is on or off, only the alerting functionality. In other words, whether set to ‘yes’

or ’no’, HTTP normalization will still occur, and rules based on HTTP traffic will still trigger.

1. profile <all|apache|iis|iis5 0|iis4 0>

Users can configure HTTP Inspect by using pre-defined HTTP server profiles. Profiles allow the user to easily

configure the preprocessor for a certain type of server, but are not required for proper operation.

There are five profiles available: all, apache, iis, iis5 0, and iis4 0.

1-A. all

The all profile is meant to normalize the URI using most of the common tricks available. We alert on the

more serious forms of evasions. This is a great profile for detecting all types of attacks, regardless of the

HTTP server. profile all sets the configuration options described in Table 2.3.

1-B. apache

The apache profile is used for Apache web servers. This differs from the iis profile by only accepting

UTF-8 standard Unicode encoding and not accepting backslashes as legitimate slashes, like IIS does.

Apache also accepts tabs as whitespace. profile apache sets the configuration options described in

Table 2.4.

1-C. iis

The iis profile mimics IIS servers. So that means we use IIS Unicode codemaps for each server, %u

encoding, bare-byte encoding, double decoding, backslashes, etc. profile iis sets the configuration

options described in Table 2.5.

1-D. iis4 0, iis5 0

In IIS 4.0 and IIS 5.0, there was a double decoding vulnerability. These two profiles are identical to iis,

except they will alert by default if a URL has a double encoding. Double decode is not supported in IIS

5.1 and beyond, so it’s disabled by default.

63

Table 2.3: Options for the “all” Profile

Option Setting

server flow depth 300

client flow depth 300

post depth 0

chunk encoding alert on chunks larger than 500000 bytes

iis unicode map codepoint map in the global configuration

ASCII decoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

apache whitespace on, alert off

double decoding on, alert on

%u decoding on, alert on

bare byte decoding on, alert on

iis unicode codepoints on, alert on

iis backslash on, alert off

iis delimiter on, alert off

webroot on, alert on

non strict URL parsing on

tab uri delimiter is set

max header length 0, header length not checked

max spaces 200

max headers 0, number of headers not checked

1-E. default, no profile

The default options used by HTTP Inspect do not use a profile and are described in Table 2.6.

Profiles must be specified as the first server option and cannot be combined with any other options except:

• ports

• iis unicode map

• allow proxy use

• server flow depth

• client flow depth

• post depth

• no alerts

• inspect uri only

• oversize dir length

• normalize headers

• normalize cookies

• normalize utf

• max header length

• max spaces

• max headers

• extended response inspection

• enable cookie

• inspect gzip

• unlimited decompress

• normalize javascript

• max javascript whitespaces

• enable xff

• http methods

64

Table 2.4: Options for the apache Profile

Option Setting

server flow depth 300

client flow depth 300

post depth 0

chunk encoding alert on chunks larger than 500000 bytes

ASCII decoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alert on

apache whitespace on, alert on

utf 8 encoding on, alert off

non strict url parsing on

tab uri delimiter is set

max header length 0, header length not checked

max spaces 200

max headers 0, number of headers not checked

• log uri

• log hostname

• small chunk length

• decompress swf

• decompress pdf

• legacy mode

These options must be specified after the profile option.

Example

preprocessor http_inspect_server: \

server 1.1.1.1 profile all ports { 80 3128 }

2. ports {<port> [<port>< ... >]}

This is how the user configures which ports to decode on the HTTP server. However, HTTPS traffic is encrypted

and cannot be decoded with HTTP Inspect. To ignore HTTPS traffic, use the SSL preprocessor.

3. iis unicode map <map filename> codemap <integer>

The IIS Unicode map is generated by the program ms unicode generator.c. This program is located on the

Snort.org web site at http://www.snort.org/dl/contrib/ directory. Executing this program generates a

Unicode map for the system that it was run on. So, to get the specific Unicode mappings for an IIS web server,

you run this program on that server and use that Unicode map in this configuration.

When using this option, the user needs to specify the file that contains the IIS Unicode map and also specify

the Unicode map to use. For US servers, this is usually 1252. But the ms unicode generator program tells you

which codemap to use for you server; it’s the ANSI code page. You can select the correct code page by looking

at the available code pages that the ms unicode generator outputs.

4. extended response inspection

This enables the extended HTTP response inspection. The default http response inspection does not inspect the

various fields of a HTTP response. By turning this option the HTTP response will be thoroughly inspected. The

different fields of a HTTP response such as status code, status message, headers, cookie (when enable cookie is

configured) and body are extracted and saved into buffers. Different rule options are provided to inspect these

buffers.

This option must be enabled to make use of the decompress swf or decompress pdf options.

65

Table 2.5: Options for the iis Profile

Option Setting

server flow depth 300

client flow depth 300

post depth -1

chunk encoding alert on chunks larger than 500000 bytes

iis unicode map codepoint map in the global configuration

ASCII decoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alert on

double decoding on, alert on

%u decoding on, alert on

bare byte decoding on, alert on

iis unicode codepoints on, alert on

iis backslash on, alert off

iis delimiter on, alert on

apache whitespace on, alert on

non strict URL parsing on

max header length 0, header length not checked

max spaces 200

max headers 0, number of headers not checked

△!
NOTE

When this option is turned on, if the HTTP response packet has a body then any content pattern matches

(without http modifiers) will search the response body ((decompressed in case of gzip) and not the entire

packet payload. To search for patterns in the header of the response, one should use the http modifiers with

content such as http header, http stat code, http stat msg and http cookie.

5. enable cookie

This options turns on the cookie extraction from HTTP requests and HTTP response. By default the cookie

inspection and extraction will be turned off. The cookie from the Cookie header line is extracted and stored

in HTTP Cookie buffer for HTTP requests and cookie from the Set-Cookie is extracted and stored in HTTP

Cookie buffer for HTTP responses. The Cookie: and Set-Cookie: header names itself along with leading

spaces and the CRLF terminating the header line are stored in the HTTP header buffer and are not stored in the

HTTP cookie buffer.

Ex: Set-Cookie: mycookie \r\n

In this case, Set-Cookie: \r\n will be in the HTTP header buffer and the pattern

mycookie will be in the HTTP cookie buffer.

6. inspect gzip

This option specifies the HTTP inspect module to uncompress the compressed data(gzip/deflate) in HTTP re-

sponse. You should select the config option ”extended response inspection” before configuring this option.

Decompression is done across packets. So the decompression will end when either the ’compress depth’ or

’decompress depth’ is reached or when the compressed data ends. When the compressed data is spanned across

multiple packets, the state of the last decompressed packet is used to decompressed the data of the next packet.

But the decompressed data are individually inspected. (i.e. the decompressed data from different packets are

not combined while inspecting). Also the amount of decompressed data that will be inspected depends on the

’server flow depth’ configured.

66

Table 2.6: Default HTTP Inspect Options

Option Setting

port 80

server flow depth 300

client flow depth 300

post depth -1

chunk encoding alert on chunks larger than 500000 bytes

ASCII decoding on, alert off

utf 8 encoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alert on

iis backslash on, alert off

apache whitespace on, alert off

iis delimiter on, alert off

non strict URL parsing on

max header length 0, header length not checked

max spaces 200

max headers 0, number of headers not checked

Http Inspect generates a preprocessor alert with gid 120 and sid 6 when the decompression fails. When the

decompression fails due to a CRC error encountered by zlib, HTTP Inspect will also provide the detection

module with the data that was decompressed by zlib.

7. unlimited decompress

This option enables the user to decompress unlimited gzip data (across multiple packets).Decompression will

stop when the compressed data ends or when a out of sequence packet is received. To ensure unlimited decom-

pression, user should set the ’compress depth’ and ’decompress depth’ to its maximum values in the default

policy. The decompression in a single packet is still limited by the ’compress depth’ and ’decompress depth’.

8. decompress swf {mode[mode]}

This option will enable decompression of compressed SWF (Adobe Flash content) files encountered as the

HTTP Response body in a GET transaction. The available decompression modes are ’deflate’ and ’lzma’.

A prerequisite is enabling extended response inspection (described above). When enabled, the preprocessor

will examine the response body for the corresponding file signature. ’CWS’ for Deflate/ZLIB compressed and

’ZWS’ for LZMA compressed. Each decompression mode can be individually enabled. e.g. ... lzma or

deflate or lzma deflate . The compressed content is decompressed ’in-place’ with the content made available

to the detection/rules ’file data’ option. If enabled and located, the compressed SWF file signature is converted

to ’FWS’ to indicate an uncompressed file.

The ’decompress depth’, ’compress depth’, and ’unlimited decompress’ are optionally used to place limits on

the decompression process. The semantics for SWF files are similar to the gzip decompression process.

During the decompression process, the preprocessor may generate alert 120:12 if Deflate decompression fails

or alert 120:13 if LZMA decompression fails.

△!
NOTE

LZMA decompression is only available if Snort is built with the liblzma package present and functional. If

the LZMA package is not present, then the lzma option will indicate a fatal parsing error. If the liblzma

package IS present, but one desires to disable LZMA support, then the –disable-lzma option on configure

will disable usage of the library.

9. decompress pdf {mode[mode]}

This option will enable decompression of the compressed portions of PDF files encountered as the HTTP Re-

sponse body in a GET transaction. A prerequisite is enabling extended response inspection (described above).

67

When enabled, the preprocessor will examine the response body for the ’PDF files are then parsed, locating PDF

’streams’ with a single ’/FlateDecode’ filter. These streams are decompressed in-place, replacing the compressed

content.

The ’decompress depth’, ’compress depth’, and ’unlimited decompress’ are optionally used to place limits on

the decompression process. The semantics for PDF files are similar to the gzip decompression process.

During the file parsing/decompression process, the preprocessor may generate several alerts:

Alert Description

120:14 Deflate decompression failure

120:15 Located a ’stream’ with an unsupported compression (’/Filter’) algorithm

120:16 Located a ’stream’ with unsupported cascaded ’/FlateDecode’ options, e.g.:

/Filter [/FlateDecode /FlateDecode]

120:17 PDF File parsing error

10. normalize javascript This option enables the normalization of Javascript within the HTTP response body.

You should select the config option extended response inspection before configuring this option. When this

option is turned on, Http Inspect searches for a Javascript within the HTTP response body by searching for the

<script> tags and starts normalizing it. When Http Inspect sees the <script> tag without a type, it is considered

as a javascript. The obfuscated data within the javascript functions such as unescape, String.fromCharCode,

decodeURI, decodeURIComponent will be normalized. The different encodings handled within the unescape/

decodeURI/decodeURIComponent are %XX, %uXXXX,

XX and

uXXXXi. Apart from these encodings, Http Inspect will also detect the consecutive whitespaces and normalize

it to a single space. Http Inspect will also normalize the plus and concatenate the strings. The rule option

file data can be used to access this normalized buffer from the rule. A preprocessor alert with SID 9 and GID

120 is generated when the obfuscation levels within the Http Inspect is equal to or greater than 2.

Example:

HTTP/1.1 200 OK\r\n

Date: Wed, 29 Jul 2009 13:35:26 GMT\r\n

Server: Apache/2.2.3 (Debian) PHP/5.2.0-8+etch10 mod_ssl/2.2.3 OpenSSL/0.9.8c\r\n

Last-Modified: Sun, 20 Jan 2008 12:01:21 GMT\r\n

Accept-Ranges: bytes\r\n

Content-Length: 214\r\n

Keep-Alive: timeout=15, max=99\r\n

Connection: Keep-Alive\r\n

Content-Type: application/octet-stream\r\n\r\n

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>FIXME</title>

</head>

<body>

<script>document.write(unescape(unescape("%48%65%6C%6C%6F%2C%20%73%6E%6F%72%74%20%74%65%61%6D%21")));

</script>

</body>

</html>

The above javascript will generate the preprocessor alert with SID 9 and GIDF 120 when normalize javascript

is turned on.

Http Inspect will also generate a preprocessor alert with GID 120 and SID 11 when there are more than one type

of encodings within the escaped/encoded data.

68

For example:

unescape("%48\x65%6C%6C%6F%2C%20%73%6E%6F%72%74%20%74%65%61%6D%21");

String.fromCharCode(0x48, 0x65, 0x6c, 0x6c, 111, 44, 32, 115, 110, 111, 114, 116, 32, 116, 101, 97, 109,

\

The above obfuscation will generate the preprocessor alert with GID 120 and SID 11.

This option is turned off by default in HTTP Inspect.

11. max javascript whitespaces <positive integer up to 65535> This option takes an integer as an ar-

gument. The integer determines the maximum number of consecutive whitespaces allowed within the Javascript

obfuscated data in a HTTP response body. The config option normalize javascript should be turned on be-

fore configuring this config option. When the whitespaces in the javascript obfuscated data is equal to or more

than this value a preprocessor alert with GID 120 and SID 10 is generated. The default value for this option is

200. To enable, specify an integer argument to max javascript spaces of 1 to 65535. Specifying a value of 0

is treated as disabling the alert.

12. enable xff

This option enables Snort to parse and log the original client IP present in the X-Forwarded-For or True-Client-

IP HTTP request headers along with the generated events. The XFF/True-Client-IP Original client IP address is

logged only with unified2 output and is not logged with console (-A cmg) output.

13. xff headers

If/When the enable xff option is present, the xff headers option specifies a set of custom ’xff’ headers. This

option allows the definition of up to six custom headers in addition to the two default (and always present)

X-Forwarded-For and True-Client-IP headers. The option permits both the custom and default headers to be

prioritized. The headers/priority pairs are specified as a list. Lower numerical values imply a higher priority.

The headers do not need to be specified in priority order. Nor do the priorities need to be contiguous. Priority

values can range from 1 to 255. The priority values and header names must be unique. The header names must

not collide with known http headers such as ’host’, ’cookie’, ’content-length’, etc.

A example of the xff header syntax is:

xff_headers { [x-forwarded-highest-priority 1] [x-forwarded-second-highest-priority 2] \

[x-forwarded-lowest-priority-custom 3] }

The default X-Forwarded-For and True-Client-IP headers are always present. They may be explicitly specified

in the xff headers config in order to determine their priority. If not specified, they will be automatically added

to the xff list as the lowest priority headers.

For example, let us say that we have the following (abbreviated) HTTP request header:

...

Host: www.snort.org

X-Forwarded-For: 192.168.1.1

X-Was-Originally-Forwarded-From: 10.1.1.1

...

With the default xff behavior (no xff headers), the ’X-Forwarded-For’ header would be used to provide a

192.168.1.1 Original Client IP address in the unified2 log. Custom headers are not parsed.

With:

xff_headers { [x-was-originally-forwarded-from 1] [x-another-forwarding-header 2] \

[x-forwarded-for 3] }

69

The X-Was-Originally-Forwarded-From header is the highest priority present and its value of 10.1.1.1 will be

logged as the Original Client IP in the unified2 log.

But with:

xff_headers { [x-was-originally-forwarded-from 3] [x-another-forwarding-header 2] \

[x-forwarded-for 1] }

Now the X-Forwarded-For header is the highest priority and its value of 192.168.1.1 is logged.

△!
NOTE

The original client IP from XFF/True-Client-IP in unified2 logs can be viewed using the tool u2spewfoo.

This tool is present in the tools/u2spewfoo directory of snort source tree.

14. server flow depth <integer>

This specifies the amount of server response payload to inspect. When extended response inspection is

turned on, it is applied to the HTTP response body (decompressed data when inspect gzip is turned on)

and not the HTTP headers. When extended response inspection is turned off the server flow depth is

applied to the entire HTTP response (including headers). Unlike client flow depth this option is applied

per TCP session. This option can be used to balance the needs of IDS performance and level of inspection of

HTTP server response data. Snort rules are targeted at HTTP server response traffic and when used with a small

flow depth value may cause false negatives. Most of these rules target either the HTTP header, or the content

that is likely to be in the first hundred or so bytes of non-header data. Headers are usually under 300 bytes long,

but your mileage may vary. It is suggested to set the server flow depth to its maximum value.

This value can be set from -1 to 65535. A value of -1 causes Snort to ignore all server side traffic for ports defined

in ports when extended response inspection is turned off. When the extended response inspection is

turned on, value of -1 causes Snort to ignore the HTTP response body data and not the HTTP headers. Inversely,

a value of 0 causes Snort to inspect all HTTP server payloads defined in ”ports” (note that this will likely

slow down IDS performance). Values above 0 tell Snort the number of bytes to inspect of the server response

(excluding the HTTP headers when extended response inspection is turned on) in a given HTTP session.

Only packets payloads starting with ’HTTP’ will be considered as the first packet of a server response. If less

than flow depth bytes are in the payload of the HTTP response packets in a given session, the entire payload

will be inspected. If more than flow depth bytes are in the payload of the HTTP response packet in a session

only flow depth bytes of the payload will be inspected for that session. Rules that are meant to inspect data in

the payload of the HTTP response packets in a session beyond 65535 bytes will be ineffective unless flow depth

is set to 0. The default value for server flow depth is 300. Note that the 65535 byte maximum flow depth

applies to stream reassembled packets as well. It is suggested to set the server flow depth to its maximum

value.

△!
NOTE

server flow depth is the same as the old flow depth option, which will be deprecated in a future release.

15. client flow depth <integer>

This specifies the amount of raw client request payload to inspect. This value can be set from -1 to 1460. Unlike

server flow depth this value is applied to the first packet of the HTTP request. It is not a session based flow

depth. It has a default value of 300. It primarily eliminates Snort from inspecting larger HTTP Cookies that

appear at the end of many client request Headers.

A value of -1 causes Snort to ignore all client side traffic for ports defined in ”ports.” Inversely, a value of 0

causes Snort to inspect all HTTP client side traffic defined in ”ports” (note that this will likely slow down IDS

performance). Values above 0 tell Snort the number of bytes to inspect in the first packet of the client request.

If less than flow depth bytes are in the TCP payload (HTTP request) of the first packet, the entire payload will

be inspected. If more than flow depth bytes are in the payload of the first packet only flow depth bytes of the

payload will be inspected. Rules that are meant to inspect data in the payload of the first packet of a client

70

request beyond 1460 bytes will be ineffective unless flow depth is set to 0. Note that the 1460 byte maximum

flow depth applies to stream reassembled packets as well. It is suggested to set the client flow depth to its

maximum value.

16. post depth <integer>

This specifies the amount of data to inspect in a client post message. The value can be set from -1 to 65495. The

default value is -1. A value of -1 causes Snort to ignore all the data in the post message. Inversely, a value of 0

causes Snort to inspect all the client post message. This increases the performance by inspecting only specified

bytes in the post message.

17. ascii <yes|no>

The ascii decode option tells us whether to decode encoded ASCII chars, a.k.a %2f = /, %2e = ., etc. It is

normal to see ASCII encoding usage in URLs, so it is recommended that you disable HTTP Inspect alerting for

this option.

18. extended ascii uri

This option enables the support for extended ASCII codes in the HTTP request URI. This option is turned off

by default and is not supported with any of the profiles.

19. utf 8 <yes|no>

The utf-8 decode option tells HTTP Inspect to decode standard UTF-8 Unicode sequences that are in the URI.

This abides by the Unicode standard and only uses % encoding. Apache uses this standard, so for any Apache

servers, make sure you have this option turned on. As for alerting, you may be interested in knowing when you

have a UTF-8 encoded URI, but this will be prone to false positives as legitimate web clients use this type of

encoding. When utf 8 is enabled, ASCII decoding is also enabled to enforce correct functioning.

20. u encode <yes|no>

This option emulates the IIS %u encoding scheme. How the %u encoding scheme works is as follows: the

encoding scheme is started by a %u followed by 4 characters, like %uxxxx. The xxxx is a hex-encoded value

that correlates to an IIS Unicode codepoint. This value can most definitely be ASCII. An ASCII character is

encoded like %u002f = /, %u002e = ., etc. If no iis unicode map is specified before or after this option, the

default codemap is used.

You should alert on %u encodings, because we are not aware of any legitimate clients that use this encoding. So

it is most likely someone trying to be covert.

21. bare byte <yes|no>

Bare byte encoding is an IIS trick that uses non-ASCII characters as valid values when decoding UTF-8 values.

This is not in the HTTP standard, as all non-ASCII values have to be encoded with a %. Bare byte encoding

allows the user to emulate an IIS server and interpret non-standard encodings correctly.

The alert on this decoding should be enabled, because there are no legitimate clients that encode UTF-8 this

way since it is non-standard.

22. iis unicode <yes|no>

The iis unicode option turns on the Unicode codepoint mapping. If there is no iis unicode map option spec-

ified with the server config, iis unicode uses the default codemap. The iis unicode option handles the

mapping of non-ASCII codepoints that the IIS server accepts and decodes normal UTF-8 requests.

You should alert on the iis unicode option, because it is seen mainly in attacks and evasion attempts. When

iis unicode is enabled, ASCII and UTF-8 decoding are also enabled to enforce correct decoding. To alert on

UTF-8 decoding, you must enable also enable utf 8 yes.

23. double decode <yes|no>

The double decode option is once again IIS-specific and emulates IIS functionality. How this works is that IIS

does two passes through the request URI, doing decodes in each one. In the first pass, it seems that all types of

iis encoding is done: utf-8 unicode, ASCII, bare byte, and %u. In the second pass, the following encodings are

done: ASCII, bare byte, and %u. We leave out utf-8 because I think how this works is that the % encoded utf-8

is decoded to the Unicode byte in the first pass, and then UTF-8 is decoded in the second stage. Anyway, this

is really complex and adds tons of different encodings for one character. When double decode is enabled, so

ASCII is also enabled to enforce correct decoding.

71

24. non rfc char {<byte> [<byte ...>]}

This option lets users receive an alert if certain non-RFC chars are used in a request URI. For instance, a user

may not want to see null bytes in the request URI and we can alert on that. Please use this option with care,

because you could configure it to say, alert on all ‘/’ or something like that. It’s flexible, so be careful.

25. multi slash <yes|no>

This option normalizes multiple slashes in a row, so something like: “foo/////////bar” get normalized to “foo/bar.”

If you want an alert when multiple slashes are seen, then configure with a yes; otherwise, use no.

26. iis backslash <yes|no>

Normalizes backslashes to slashes. This is again an IIS emulation. So a request URI of “/foo\bar” gets normal-

ized to “/foo/bar.”

27. directory <yes|no>

This option normalizes directory traversals and self-referential directories.

The directory:

/foo/fake_dir/../bar

gets normalized to:

/foo/bar

The directory:

/foo/./bar

gets normalized to:

/foo/bar

If you want to configure an alert, specify yes, otherwise, specify no. This alert may give false positives, since

some web sites refer to files using directory traversals.

28. apache whitespace <yes|no>

This option deals with the non-RFC standard of using tab for a space delimiter. Apache uses this, so if the

emulated web server is Apache, enable this option. Alerts on this option may be interesting, but may also be

false positive prone.

29. iis delimiter <yes|no>

This started out being IIS-specific, but Apache takes this non-standard delimiter was well. Since this is common,

we always take this as standard since the most popular web servers accept it. But you can still get an alert on

this option.

30. chunk length <non-zero positive integer>

This option is an anomaly detector for abnormally large chunk sizes. This picks up the Apache chunk encoding

exploits, and may also alert on HTTP tunneling that uses chunk encoding.

31. small chunk length { <chunk size> <consecutive chunks> }

This option is an evasion detector for consecutive small chunk sizes when either the client or server use

Transfer-Encoding: chunked. <chunk size> specifies the maximum chunk size for which a chunk will

be considered small. <consecutive chunks> specifies the number of consecutive small chunks <= <chunk

size> before an event will be generated. This option is turned off by default. Maximum values for each are 255

and a <chunk size> of 0 disables. Events generated are gid:119, sid:26 for client small chunks and gid:120,

sid:7 for server small chunks.

Example:

72

small_chunk_length { 10 5 }

Meaning alert if we see 5 consecutive chunk sizes of 10 or less.

32. no pipeline req

This option turns HTTP pipeline decoding off, and is a performance enhancement if needed. By default, pipeline

requests are inspected for attacks, but when this option is enabled, pipeline requests are not decoded and ana-

lyzed per HTTP protocol field. It is only inspected with the generic pattern matching.

33. non strict

This option turns on non-strict URI parsing for the broken way in which Apache servers will decode a URI.

Only use this option on servers that will accept URIs like this: ”get /index.html alsjdfk alsj lj aj la jsj s\n”. The

non strict option assumes the URI is between the first and second space even if there is no valid HTTP identifier

after the second space.

34. allow proxy use

By specifying this keyword, the user is allowing proxy use on this server. This means that no alert will be

generated if the proxy alert global keyword has been used. If the proxy alert keyword is not enabled, then

this option does nothing. The allow proxy use keyword is just a way to suppress unauthorized proxy use for

an authorized server.

35. no alerts

This option turns off all alerts that are generated by the HTTP Inspect preprocessor module. This has no effect

on HTTP rules in the rule set. No argument is specified.

36. oversize dir length <non-zero positive integer>

This option takes a non-zero positive integer as an argument. The argument specifies the max char directory

length for URL directory. If a url directory is larger than this argument size, an alert is generated. A good

argument value is 300 characters. This should limit the alerts to IDS evasion type attacks, like whisker -i 4.

37. inspect uri only

This is a performance optimization. When enabled, only the URI portion of HTTP requests will be inspected

for attacks. As this field usually contains 90-95% of the web attacks, you’ll catch most of the attacks. So if

you need extra performance, enable this optimization. It’s important to note that if this option is used without

any uricontent rules, then no inspection will take place. This is obvious since the URI is only inspected with

uricontent rules, and if there are none available, then there is nothing to inspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)

and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated when inspect uri only is enabled. The inspect uri only configuration turns off

all forms of detection except uricontent inspection.

38. max header length <positive integer up to 65535>

This option takes an integer as an argument. The integer is the maximum length allowed for an HTTP client

request header field. Requests that exceed this length will cause a ”Long Header” alert. This alert is off by

default. To enable, specify an integer argument to max header length of 1 to 65535. Specifying a value of 0 is

treated as disabling the alert.

39. max spaces <positive integer up to 65535>

This option takes an integer as an argument. The integer determines the maximum number of whitespaces

allowed with HTTP client request line folding. Requests headers folded with whitespaces equal to or more than

this value will cause a ”Space Saturation” alert with SID 26 and GID 119. The default value for this option is

200. To enable, specify an integer argument to max spaces of 1 to 65535. Specifying a value of 0 is treated as

disabling the alert.

73

40. webroot <yes|no>

This option generates an alert when a directory traversal traverses past the web server root directory. This

generates much fewer false positives than the directory option, because it doesn’t alert on directory traversals

that stay within the web server directory structure. It only alerts when the directory traversals go past the web

server root directory, which is associated with certain web attacks.

41. tab uri delimiter

This option turns on the use of the tab character (0x09) as a delimiter for a URI. Apache accepts tab as a

delimiter; IIS does not. For IIS, a tab in the URI should be treated as any other character. Whether this option is

on or not, a tab is treated as whitespace if a space character (0x20) precedes it. No argument is specified.

42. normalize headers

This option turns on normalization for HTTP Header Fields, not including Cookies (using the same configuration

parameters as the URI normalization (i.e., multi-slash, directory, etc.). It is useful for normalizing Referrer URIs

that may appear in the HTTP Header.

43. normalize cookies

This option turns on normalization for HTTP Cookie Fields (using the same configuration parameters as the

URI normalization (i.e., multi-slash, directory, etc.). It is useful for normalizing data in HTTP Cookies that may

be encoded.

44. normalize utf

This option turns on normalization of HTTP response bodies where the Content-Type header lists the character

set as ”utf-16le”, ”utf-16be”, ”utf-32le”, or ”utf-32be”. HTTP Inspect will attempt to normalize these back into

8-bit encoding, generating an alert if the extra bytes are non-zero.

45. max headers <positive integer up to 1024>

This option takes an integer as an argument. The integer is the maximum number of HTTP client request header

fields. Requests that contain more HTTP Headers than this value will cause a ”Max Header” alert. The alert is

off by default. To enable, specify an integer argument to max headers of 1 to 1024. Specifying a value of 0 is

treated as disabling the alert.

46. http methods {cmd[cmd]} This specifies additional HTTP Request Methods outside of those checked by

default within the preprocessor (GET and POST). The list should be enclosed within braces and delimited by

spaces, tabs, line feed or carriage return. The config option, braces and methods also needs to be separated by

braces.

http_methods { PUT CONNECT }

△!
NOTE

Please note the maximum length for a method name is 256.

47. log uri

This option enables HTTP Inspect preprocessor to parse the URI data from the HTTP request and log it along

with all the generated events for that session. Stream reassembly needs to be turned on HTTP ports to enable

the logging. If there are multiple HTTP requests in the session, the URI data of the most recent HTTP request

during the alert will be logged. The maximum URI logged is 2048.

△!
NOTE

Please note, this is logged only with the unified2 output and is not logged with console output (-A cmg).

u2spewfoo can be used to read this data from the unified2.

74

48. log hostname

This option enables HTTP Inspect preprocessor to parse the hostname data from the ”Host” header of the HTTP

request and log it along with all the generated events for that session. Stream reassembly needs to be turned on

HTTP ports to enable the logging. If there are multiple HTTP requests in the session, the Hostname data of the

most recent HTTP request during the alert will be logged. In case of multiple ”Host” headers within one HTTP

request, a preprocessor alert with sid 24 is generated. The maximum hostname length logged is 256.

△!
NOTE

Please note, this is logged only with the unified2 output and is not logged with console output (-A cmg).

u2spewfoo can be used to read this data from the unified2.

##

HTTP2 SUPPORT IS STILL EXPERIMENTAL!

DO NOT USE IN PRODUCTION ENVIRONMENTS.

Please send any issues to the Snort team

##

49. legacy mode By default, HTTP2 traffic is not supported. You can use ”legacy mode no” to enable HTTP2

support. If http legacy mode is configured, HTTP2 inspection is disabled.

Examples

preprocessor http_inspect_server: \

server 10.1.1.1 \

ports { 80 3128 8080 } \

server_flow_depth 0 \

ascii no \

double_decode yes \

non_rfc_char { 0x00 } \

chunk_length 500000 \

non_strict \

no_alerts

preprocessor http_inspect_server: \

server default \

ports { 80 3128 } \

non_strict \

non_rfc_char { 0x00 } \

server_flow_depth 300 \

apache_whitespace yes \

directory no \

iis_backslash no \

u_encode yes \

ascii no \

chunk_length 500000 \

bare_byte yes \

double_decode yes \

iis_unicode yes \

iis_delimiter yes \

multi_slash no

preprocessor http_inspect_server: \

server default \

profile all \

ports { 80 8080 }

75

2.2.8 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applications. Given a data buffer, SMTP will decode the buffer

and find SMTP commands and responses. It will also mark the command, data header data body sections, and TLS

data.

SMTP handles stateless and stateful processing. It saves state between individual packets. However maintaining

correct state is dependent on the reassembly of the client side of the stream (i.e., a loss of coherent stream data results

in a loss of state).

Configuration

SMTP has the usual configuration items, such as port and inspection type. Also, SMTP command lines can be

normalized to remove extraneous spaces. TLS-encrypted traffic can be ignored, which improves performance. In

addition, regular mail data can be ignored for an additional performance boost. Since so few (none in the current snort

rule set) exploits are against mail data, this is relatively safe to do and can improve the performance of data inspection.

The configuration options are described below:

1. ports { <port> [<port>] ... }

This specifies on what ports to check for SMTP data. Typically, this will include 25 and possibly 465, for

encrypted SMTP.

2. inspection type <stateful | stateless>

Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for more than one space character after a command. Space

characters are defined as space (ASCII 0x20) or tab (ASCII 0x09).

all checks all commands

none turns off normalization for all commands.

cmds just checks commands listed with the normalize cmds parameter.

4. ignore data

Ignore data section of mail (except for mail headers) when processing rules.

5. ignore tls data

Ignore TLS-encrypted data when processing rules.

6. max command line len <int>

Alert if an SMTP command line is longer than this value. Absence of this option or a ”0” means never alert on

command line length. RFC 2821 recommends 512 as a maximum command line length.

7. max header line len <int>

Alert if an SMTP DATA header line is longer than this value. Absence of this option or a ”0” means never alert

on data header line length. RFC 2821 recommends 1024 as a maximum data header line length.

8. max response line len <int>

Alert if an SMTP response line is longer than this value. Absence of this option or a ”0” means never alert on

response line length. RFC 2821 recommends 512 as a maximum response line length.

9. alt max command line len <int> { <cmd> [<cmd>] }

Overrides max command line len for specific commands.

10. no alerts

Turn off all alerts for this preprocessor.

76

11. invalid cmds { <Space-delimited list of commands> }

Alert if this command is sent from client side. Default is an empty list.

12. valid cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in this list. Default is an empty list, but preprocessor has

this list hard-coded:

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXPN HELO

HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEU STARTTLS TICK

TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE XADR XAUTH XCIR XEXCH50

XGEN XLICENSE XQUE XSTA XTRN XUSR }

13. data cmds { <Space-delimited list of commands> }

List of commands that initiate sending of data with an end of data delimiter the same as that of the DATA

command per RFC 5321 - "<CRLF>.<CRLF>". Default is { DATA }.

14. binary data cmds { <Space-delimited list of commands> }

List of commands that initiate sending of data and use a length value after the command to indicate the amount

of data to be sent, similar to that of the BDAT command per RFC 3030. Default is { BDAT XEXCH50 }.

15. auth cmds { <Space-delimited list of commands> }

List of commands that initiate an authentication exchange between client and server. Default is {AUTH XAUTH

X-EXPS }.

16. alert unknown cmds

Alert if we don’t recognize command. Default is off.

17. normalize cmds { <Space-delimited list of commands> }

Normalize this list of commands Default is { RCPT VRFY EXPN }.

18. xlink2state { enable | disable [drop] }

Enable/disable xlink2state alert. Drop if alerted. Default is enable.

19. print cmds

List all commands understood by the preprocessor. This not normally printed out with the configuration because

it can print so much data.

20. disabled

Disables the SMTP preprocessor in a config. This is useful when specifying the decoding depths such as

b64 decode depth, qp decode depth, uu decode depth, bitenc decode depth or the memcap used for de-

coding max mime mem in default config without turning on the SMTP preprocessor.

21. b64 decode depth

This config option is used to turn off/on or set the base64 decoding depth used to decode the base64 encoded

MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the base64 decoding of MIME

attachments. The value of 0 sets the decoding of base64 encoded MIME attachments to unlimited. A value

other than 0 or -1 restricts the decoding of base64 MIME attachments, and applies per attachment. A SMTP

preprocessor alert with sid 10 is generated (if enabled) when the decoding fails.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the base64

encoded MIME attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

This option replaces the deprecated options, enable mime decoding and max mime depth. It is recommended

that user inputs a value that is a multiple of 4. When the value specified is not a multiple of 4, the SMTP

preprocessor will round it up to the next multiple of 4.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

77

22. qp decode depth

This config option is used to turn off/on or set the Quoted-Printable decoding depth used to decode the Quoted-

Printable(QP) encoded MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the

QP decoding of MIME attachments. The value of 0 sets the decoding of QP encoded MIME attachments

to unlimited. A value other than 0 or -1 restricts the decoding of QP MIME attachments, and applies per

attachment. A SMTP preprocessor alert with sid 11 is generated (if enabled) when the decoding fails.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the QP

encoded MIME attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

23. bitenc decode depth

This config option is used to turn off/on or set the non-encoded MIME extraction depth used to extract the non-

encoded MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the extraction of these

MIME attachments. The value of 0 sets the extraction of these MIME attachments to unlimited. A value other

than 0 or -1 restricts the extraction of these MIME attachments, and applies per attachment.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the non-

encoded MIME attachments/data across multiple packets are extracted too.

The extracted data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

24. uu decode depth

This config option is used to turn off/on or set the Unix-to-Unix decoding depth used to decode the Unix-to-

Unix(UU) encoded attachments. The value ranges from -1 to 65535. A value of -1 turns off the UU decoding

of SMTP attachments. The value of 0 sets the decoding of UU encoded SMTP attachments to unlimited. A

value other than 0 or -1 restricts the decoding of UU SMTP attachments, and applies per attachment. A SMTP

preprocessor alert with sid 13 is generated (if enabled) when the decoding fails.

Multiple UU attachments/data in one packet are pipelined. When stateful inspection is turned on the UU encoded

SMTP attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

25. enable mime decoding

Enables Base64 decoding of Mime attachments/data. Multiple base64 encoded MIME attachments/data in

one packet are pipelined. When stateful inspection is turned on the base64 encoded MIME attachments/data

across multiple packets are decoded too. The decoding of base64 encoded attachments/data ends when either

the max mime depth or maximum MIME sessions (calculated using max mime depth and max mime mem) is

reached or when the encoded data ends. The decoded data is available for detection using the rule option

file data. See 3.5.28 rule option for more details.

This option is deprecated. Use the option b64 decode depth to turn off or on the base64 decoding instead.

26. max mime depth <int>

Specifies the maximum number of base64 encoded data to decode per SMTP attachment. The option take values

ranging from 4 to 20480 bytes. The default value for this in snort in 1460 bytes.

It is recommended that user inputs a value that is a multiple of 4. When the value specified is not a multiple of

4, the SMTP preprocessor will round it up to the next multiple of 4.

This option is deprecated. Use the option b64 decode depth to turn off or on the base64 decoding instead.

78

27. max mime mem <int>

This option determines (in bytes) the maximum amount of memory the SMTP preprocessor will use for decoding

base64 encoded/quoted-printable/non-encoded MIME attachments/data or Unix-to-Unix encoded attachments.

This value can be set from 3276 bytes to 100MB.

This option along with the maximum of the decoding depths will determine the SMTP sessions that will be

decoded at any given instant. The default value for this option is 838860.

Note: It is suggested to set this value such that the max smtp session calculated as follows is at least 1.

max smtp session = max mime mem /(2 * max of (b64 decode depth, uu decode depth, qp decode depth or

bitenc decode depth))

For example, if b64 decode depth is 0 (indicates unlimited decoding) and qp decode depth is 100, then

max smtp session = max mime mem/2*65535 (max value for b64 decode depth)

In case of multiple configs, the max mime mem of the non-default configs will be overwritten by the default

config’s value. Hence user needs to define it in the default config with the new keyword disabled (used to

disable SMTP preprocessor in a config).

28. log mailfrom This option enables SMTP preprocessor to parse and log the sender’s email address extracted

from the ”MAIL FROM” command along with all the generated events for that session. The maximum number

of bytes logged for this option is 1024.

Please note, this is logged only with the unified2 output and is not logged with console output (-A cmg).

u2spewfoo can be used to read this data from the unified2.

29. log rcptto This option enables SMTP preprocessor to parse and log the recipient’s email addresses extracted

from the ”RCPT TO” command along with all the generated events for that session. Multiple recipients are

appended with commas. The maximum number of bytes logged for this option is 1024.

Please note, this is logged only with the unified2 output and is not logged with console output (-A cmg).

u2spewfoo can be used to read this data from the unified2.

30. log filename This option enables SMTP preprocessor to parse and log the MIME attachment filenames ex-

tracted from the Content-Disposition header within the MIME body along with all the generated events for that

session. Multiple filenames are appended with commas. The maximum number of bytes logged for this option

is 1024.

Please note, this is logged only with the unified2 output and is not logged with the console output (-A cmg).

u2spewfoo can be used to read this data from the unified2.

31. log email hdrs This option enables SMTP preprocessor to parse and log the SMTP email headers extracted

from SMTP data along with all generated events for that session. The number of bytes extracted and logged

depends upon the email hdrs log depth.

Please note, this is logged only with the unified2 output and is not logged with the console output (-A cmg).

u2spewfoo can be used to read this data from the unified2.

32. email hdrs log depth <int> This option specifies the depth for logging email headers. The allowed range

for this option is 0 - 20480. A value of 0 will disable email headers logging. The default value for this option is

1464.

Please note, in case of multiple policies, the value specified in the default policy is used and the values specified

in the targeted policies are overwritten by the default value. This option must be configured in the default policy

even if the SMTP configuration is disabled.

33. memcap <int> This option determines in bytes the maximum amount of memory the SMTP preprocessor will

use for logging of filename, MAIL FROM addresses, RCPT TO addresses and email headers. This value along

with the buffer size used to log MAIL FROM, RCPT TO, filenames and email hdrs log depth will determine

the maximum SMTP sessions that will log the email headers at any given time. When this memcap is reached

SMTP will stop logging the filename, MAIL FROM address, RCPT TO addresses and email headers until

memory becomes available.

Max SMTP sessions logging email headers at any given time = memcap/(1024 + 1024 + 1024 + email hdrs log depth)

The size 1024 is the maximum buffer size used for logging filename, RCPTTO and MAIL FROM addresses.

79

Default value for this option is 838860. The allowed range for this option is 3276 to 104857600. The value

specified in the default config is used when this option is specified in multiple configs. This option must be

configured in the default config even if the SMTP configuration is disabled.

Please note, in case of multiple policies, the value specified in the default policy is used and the values specified

in the targeted policies are overwritten by the default value. This option must be configured in the default policy

even if the SMTP configuration is disabled.

Example

preprocessor SMTP: \

ports { 25 } \

inspection_type stateful \

normalize cmds \

normalize_cmds { EXPN VRFY RCPT } \

ignore_data \

ignore_tls_data \

max_command_line_len 512 \

max_header_line_len 1024 \

max_response_line_len 512 \

no_alerts \

alt_max_command_line_len 300 { RCPT } \

invalid_cmds { } \

valid_cmds { } \

xlink2state { disable } \

print_cmds \

log_filename \

log_email_hdrs \

log_mailfrom \

log_rcptto \

email_hdrs_log_depth 2920 \

memcap 6000

preprocessor SMTP: \

b64_decode_depth 0\

max_mime_mem 4000 \

memcap 6000 \

email_hdrs_log_depth 2920 \

disabled

Default

preprocessor SMTP: \

ports { 25 } \

inspection_type stateful \

normalize cmds \

normalize_cmds { EXPN VRFY RCPT } \

alt_max_command_line_len 260 { MAIL } \

alt_max_command_line_len 300 { RCPT } \

alt_max_command_line_len 500 { HELP HELO ETRN } \

alt_max_command_line_len 255 { EXPN VRFY }

Note

RCPT TO: and MAIL FROM: are SMTP commands. For the preprocessor configuration, they are referred to as RCPT

and MAIL, respectively. Within the code, the preprocessor actually maps RCPT and MAIL to the correct command

80

name.

2.2.9 POP Preprocessor

POP is an POP3 decoder for user applications. Given a data buffer, POP will decode the buffer and find POP3

commands and responses. It will also mark the command, data header data body sections and extract the POP3

attachments and decode it appropriately.

POP will handle stateful processing. It saves state between individual packets. However maintaining correct state is

dependent on the reassembly of the server side of the stream (i.e., a loss of coherent stream data results in a loss of

state).

Stream should be turned on for POP. Please ensure that the POP ports are added to the stream5 ports for proper

reassembly.

The POP preprocessor uses GID 142 to register events.

Configuration

The configuration options are described below:

1. ports { <port> [<port>] ... }

This specifies on what ports to check for POP data. Typically, this will include 110. Default ports if none are

specified are 110 .

2. disabled

Disables the POP preprocessor in a config. This is useful when specifying the decoding depths such as b64 decode depth,

qp decode depth, uu decode depth, bitenc decode depth or the memcap used for decoding memcap in de-

fault config without turning on the POP preprocessor.

3. b64 decode depth

This config option is used to turn off/on or set the base64 decoding depth used to decode the base64 encoded

MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the base64 decoding of MIME

attachments. The value of 0 sets the decoding of base64 encoded MIME attachments to unlimited. A value

other than 0 or -1 restricts the decoding of base64 MIME attachments, and applies per attachment. A POP

preprocessor alert with sid 4 is generated (if enabled) when the decoding fails.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the base64

encoded MIME attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

It is recommended that user inputs a value that is a multiple of 4. When the value specified is not a multiple of

4, the POP preprocessor will round it up to the next multiple of 4.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

4. qp decode depth

This config option is used to turn off/on or set the Quoted-Printable decoding depth used to decode the Quoted-

Printable(QP) encoded MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the

QP decoding of MIME attachments. The value of 0 sets the decoding of QP encoded MIME attachments

to unlimited. A value other than 0 or -1 restricts the decoding of QP MIME attachments, and applies per

attachment. A POP preprocessor alert with sid 5 is generated (if enabled) when the decoding fails.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the QP

encoded MIME attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

81

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

5. bitenc decode depth

This config option is used to turn off/on or set the non-encoded MIME extraction depth used to extract the non-

encoded MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the extraction of these

MIME attachments. The value of 0 sets the extraction of these MIME attachments to unlimited. A value other

than 0 or -1 restricts the extraction of these MIME attachments, and applies per attachment.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the non-

encoded MIME attachments/data across multiple packets are extracted too.

The extracted data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

6. uu decode depth

This config option is used to turn off/on or set the Unix-to-Unix decoding depth used to decode the Unix-to-

Unix(UU) encoded attachments. The value ranges from -1 to 65535. A value of -1 turns off the UU decoding of

POP attachments. The value of 0 sets the decoding of UU encoded POP attachments to unlimited. A value other

than 0 or -1 restricts the decoding of UU POP attachments, and applies per attachment. A POP preprocessor

alert with sid 7 is generated (if enabled) when the decoding fails.

Multiple UU attachments/data in one packet are pipelined. When stateful inspection is turned on the UU encoded

POP attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

7. memcap <int>

This option determines (in bytes) the maximum amount of memory the POP preprocessor will use for decoding

base64 encoded/quoted-printable/non-encoded MIME attachments/data or Unix-to-Unix encoded attachments.

This value can be set from 3276 bytes to 100MB.

This option along with the maximum of the decoding depths will determine the POP sessions that will be

decoded at any given instant. The default value for this option is 838860.

Note: It is suggested to set this value such that the max pop session calculated as follows is at least 1.

max pop session = memcap /(2 * max of (b64 decode depth, uu decode depth, qp decode depth or bitenc decode depth))

For example, if b64 decode depth is 0 (indicates unlimited decoding) and qp decode depth is 100, then

max pop session = memcap/2*65535 (max value for b64 decode depth)

In case of multiple configs, the memcap of the non-default configs will be overwritten by the default config’s

value. Hence user needs to define it in the default config with the new keyword disabled (used to disable POP

preprocessor in a config).

When the memcap for decoding (memcap) is exceeded the POP preprocessor alert with sid 3 is generated (when

enabled).

Example

preprocessor pop: \

ports { 110 } \

memcap 1310700 \

qp_decode_depth -1 \

b64_decode_depth 0 \

bitenc_decode_depth 100

82

preprocessor pop: \

memcap 1310700 \

qp_decode_depth 0 \

disabled

Default

preprocessor pop: \

ports { 110 } \

b64_decode_depth 1460 \

qp_decode_depth 1460 \

bitenc_decode_depth 1460 \

uu_decode_depth 1460

2.2.10 IMAP Preprocessor

IMAP is an IMAP4 decoder for user applications. Given a data buffer, IMAP will decode the buffer and find IMAP4

commands and responses. It will also mark the command, data header data body sections and extract the IMAP4

attachments and decode it appropriately.

IMAP will handle stateful processing. It saves state between individual packets. However maintaining correct state

is dependent on the reassembly of the server side of the stream (i.e., a loss of coherent stream data results in a loss of

state).

Stream should be turned on for IMAP. Please ensure that the IMAP ports are added to the stream5 ports for proper

reassembly.

The IMAP preprocessor uses GID 141 to register events.

Configuration

The configuration options are described below:

1. ports { <port> [<port>] ... }

This specifies on what ports to check for IMAP data. Typically, this will include 143. Default ports if none are

specified are 143 .

2. disabled

Disables the IMAP preprocessor in a config. This is useful when specifying the decoding depths such as

b64 decode depth, qp decode depth, uu decode depth, bitenc decode depth or the memcap used for de-

coding memcap in default config without turning on the IMAP preprocessor.

3. b64 decode depth

This config option is used to turn off/on or set the base64 decoding depth used to decode the base64 encoded

MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the base64 decoding of MIME

attachments. The value of 0 sets the decoding of base64 encoded MIME attachments to unlimited. A value

other than 0 or -1 restricts the decoding of base64 MIME attachments, and applies per attachment. A IMAP

preprocessor alert with sid 4 is generated (if enabled) when the decoding fails.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the base64

encoded MIME attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

83

It is recommended that user inputs a value that is a multiple of 4. When the value specified is not a multiple of

4, the IMAP preprocessor will round it up to the next multiple of 4.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

4. qp decode depth

This config option is used to turn off/on or set the Quoted-Printable decoding depth used to decode the Quoted-

Printable(QP) encoded MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the

QP decoding of MIME attachments. The value of 0 sets the decoding of QP encoded MIME attachments

to unlimited. A value other than 0 or -1 restricts the decoding of QP MIME attachments, and applies per

attachment. A IMAP preprocessor alert with sid 5 is generated (if enabled) when the decoding fails.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the QP

encoded MIME attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

5. bitenc decode depth

This config option is used to turn off/on or set the non-encoded MIME extraction depth used to extract the non-

encoded MIME attachments. The value ranges from -1 to 65535. A value of -1 turns off the extraction of these

MIME attachments. The value of 0 sets the extraction of these MIME attachments to unlimited. A value other

than 0 or -1 restricts the extraction of these MIME attachments, and applies per attachment.

Multiple MIME attachments/data in one packet are pipelined. When stateful inspection is turned on the non-

encoded MIME attachments/data across multiple packets are extracted too.

The extracted data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

6. uu decode depth

This config option is used to turn off/on or set the Unix-to-Unix decoding depth used to decode the Unix-to-

Unix(UU) encoded attachments. The value ranges from -1 to 65535. A value of -1 turns off the UU decoding

of IMAP attachments. The value of 0 sets the decoding of UU encoded IMAP attachments to unlimited. A

value other than 0 or -1 restricts the decoding of UU IMAP attachments, and applies per attachment. A IMAP

preprocessor alert with sid 7 is generated (if enabled) when the decoding fails.

Multiple UU attachments/data in one packet are pipelined. When stateful inspection is turned on the UU encoded

IMAP attachments/data across multiple packets are decoded too.

The decoded data is available for detection using the rule option file data. See 3.5.28 rule option for more

details.

In case of multiple configs, the value specified in the non-default config cannot exceed the value specified in the

default config.

7. memcap <int>

This option determines (in bytes) the maximum amount of memory the IMAP preprocessor will use for decoding

base64 encoded/quoted-printable/non-encoded MIME attachments/data or Unix-to-Unix encoded attachments.

This value can be set from 3276 bytes to 100MB.

This option along with the maximum of the decoding depths will determine the IMAP sessions that will be

decoded at any given instant. The default value for this option is 838860.

Note: It is suggested to set this value such that the max imap session calculated as follows is at least 1.

max imap session = memcap /(2 * max of (b64 decode depth, uu decode depth, qp decode depth or bitenc decode depth))

For example, if b64 decode depth is 0 (indicates unlimited decoding) and qp decode depth is 100, then

84

max imap session = memcap/2*65535 (max value for b64 decode depth)

In case of multiple configs, the memcap of the non-default configs will be overwritten by the default config’s

value. Hence user needs to define it in the default config with the new keyword disabled (used to disable IMAP

preprocessor in a config).

When the memcap for decoding (memcap) is exceeded the IMAP preprocessor alert with sid 3 is generated (when

enabled).

Example

preprocessor imap: \

ports { 110 } \

memcap 1310700 \

qp_decode_depth -1 \

b64_decode_depth 0 \

bitenc_decode_depth 100

preprocessor imap: \

memcap 1310700 \

qp_decode_depth 0 \

disabled

Default

preprocessor imap: \

ports { 110 } \

b64_decode_depth 1460 \

qp_decode_depth 1460 \

bitenc_decode_depth 1460 \

uu_decode_depth 1460

2.2.11 FTP/Telnet Preprocessor

FTP/Telnet is an improvement to the Telnet decoder and provides stateful inspection capability for both FTP and

Telnet data streams. FTP/Telnet will decode the stream, identifying FTP commands and responses and Telnet escape

sequences and normalize the fields. FTP/Telnet works on both client requests and server responses.

FTP/Telnet has the capability to handle stateless processing, meaning it only looks for information on a packet-by-

packet basis.

The default is to run FTP/Telnet in stateful inspection mode, meaning it looks for information and handles reassembled

data correctly.

FTP/Telnet has a very “rich” user configuration, similar to that of HTTP Inspect (See 2.2.7). Users can configure

individual FTP servers and clients with a variety of options, which should allow the user to emulate any type of FTP

server or FTP Client. Within FTP/Telnet, there are four areas of configuration: Global, Telnet, FTP Client, and FTP

Server.

△!
NOTE

Some configuration options have an argument of yes or no. This argument specifies whether the user wants

the configuration option to generate a ftptelnet alert or not. The presence of the option indicates the option

itself is on, while the yes/no argument applies to the alerting functionality associated with that option.

85

Global Configuration

The global configuration deals with configuration options that determine the global functioning of FTP/Telnet. The

following example gives the generic global configuration format:

Format

preprocessor ftp_telnet: \

global \

inspection_type stateful \

encrypted_traffic yes \

check_encrypted

You can only have a single global configuration, you’ll get an error if you try otherwise. The FTP/Telnet global

configuration must appear before the other three areas of configuration.

Configuration

1. inspection type

This indicates whether to operate in stateful or stateless mode.

2. encrypted traffic <yes|no>

This option enables detection and alerting on encrypted Telnet and FTP command channels.

△!
NOTE

When inspection type is in stateless mode, checks for encrypted traffic will occur on every packet, whereas

in stateful mode, a particular session will be noted as encrypted and not inspected any further.

3. check encrypted

Instructs the preprocessor to continue to check an encrypted session for a subsequent command to cease encryp-

tion.

Example Global Configuration

preprocessor ftp_telnet: \

global inspection_type stateful encrypted_traffic no

Telnet Configuration

The telnet configuration deals with configuration options that determine the functioning of the Telnet portion of the

preprocessor. The following example gives the generic telnet configuration format:

Format

preprocessor ftp_telnet_protocol: \

telnet \

ports { 23 } \

normalize \

ayt_attack_thresh 6 \

detect_anomalies

There should only be a single telnet configuration, and subsequent instances will override previously set values.

86

Configuration

1. ports {<port> [<port>< ... >]}

This is how the user configures which ports to decode as telnet traffic. SSH tunnels cannot be decoded, so adding

port 22 will only yield false positives. Typically port 23 will be included.

2. normalize

This option tells the preprocessor to normalize the telnet traffic by eliminating the telnet escape sequences. It

functions similarly to its predecessor, the telnet decode preprocessor. Rules written with ’raw’ content options

will ignore the normalized buffer that is created when this option is in use.

3. ayt attack thresh < number >

This option causes the preprocessor to alert when the number of consecutive telnet Are You There (AYT)

commands reaches the number specified. It is only applicable when the mode is stateful.

4. detect anomalies

In order to support certain options, Telnet supports subnegotiation. Per the Telnet RFC, subnegotiation begins

with SB (subnegotiation begin) and must end with an SE (subnegotiation end). However, certain implementa-

tions of Telnet servers will ignore the SB without a corresponding SE. This is anomalous behavior which could

be an evasion case. Being that FTP uses the Telnet protocol on the control connection, it is also susceptible to

this behavior. The detect anomalies option enables alerting on Telnet SB without the corresponding SE.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: \

telnet ports { 23 } normalize ayt_attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: default and by IP address.

Default This configuration supplies the default server configuration for any FTP server that is not individually con-

figured. Most of your FTP servers will most likely end up using the default configuration.

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: \

ftp server default ports { 21 }

Refer to 89 for the list of options set in default ftp server configuration.

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs

can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: \

ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

87

FTP Server Configuration Options

1. ports {<port> [<port>< ... >]}

This is how the user configures which ports to decode as FTP command channel traffic. Typically port 21 will

be included.

2. print cmds

During initialization, this option causes the preprocessor to print the configuration for each of the FTP commands

for this server.

3. ftp cmds {cmd[cmd]}

The preprocessor is configured to alert when it sees an FTP command that is not allowed by the server.

This option specifies a list of additional commands allowed by this server, outside of the default FTP command

set as specified in RFC 959. This may be used to allow the use of the ’X’ commands identified in RFC 775, as

well as any additional commands as needed.

For example:

ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

4. def max param len <number>

This specifies the default maximum allowed parameter length for an FTP command. It can be used as a basic

buffer overflow detection.

5. alt max param len <number> {cmd[cmd]}

This specifies the maximum allowed parameter length for the specified FTP command(s). It can be used as a

more specific buffer overflow detection. For example the USER command – usernames may be no longer than

16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }

6. chk str fmt {cmd[cmd]}

This option causes a check for string format attacks in the specified commands.

7. cmd validity cmd < fmt >

This option specifies the valid format for parameters of a given command.

fmt must be enclosed in <>’s and may contain the following:

Value Description

int Parameter must be an integer

number Parameter must be an integer between 1 and 255

char <chars> Parameter must be a single character, one of <chars>

date <datefmt> Parameter follows format specified, where:
n Number

C Character

[] optional format enclosed

| OR

{} choice of options

. + - literal

string Parameter is a string (effectively unrestricted)

host port Parameter must be a host/port specified, per RFC 959

long host port Parameter must be a long host port specified, per RFC

1639

extended host port Parameter must be an extended host port specified, per

RFC 2428

{}, | One of choices enclosed within, separated by |
{}, [] One of the choices enclosed within {}, optional value

enclosed within []

88

Examples of the cmd validity option are shown below. These examples are the default checks, per RFC 959 and

others performed by the preprocessor.

cmd_validity MODE <char SBC>

cmd_validity STRU <char FRP>

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char I | char L [number] } >

cmd_validity PORT < host_port >

A cmd validity line can be used to override these defaults and/or add a check for other commands.

This allows additional modes, including mode Z which allows for

zip-style compression.

cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.

cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] string >

MDTM is an off case that is worth discussing. While not part of an established standard, certain FTP servers ac-

cept MDTM commands that set the modification time on a file. The most common among servers that do, accept

a format using YYYYMMDDHHmmss[.uuu]. Some others accept a format using YYYYMMDDHHmmss[+—-

]TZ format. The example above is for the first case (time format as specified in http://www.ietf.org/internet-

drafts/draft-ietf-ftpext-mlst-16.txt)

To check validity for a server that uses the TZ format, use the following:

cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] string >

8. telnet cmds <yes|no>

This option turns on detection and alerting when telnet escape sequences are seen on the FTP command channel.

Injection of telnet escape sequences could be used as an evasion attempt on an FTP command channel.

9. ignore telnet erase cmds <yes|no>

This option allows Snort to ignore telnet escape sequences for erase character (TNC EAC) and erase line (TNC

EAL) when normalizing FTP command channel. Some FTP servers do not process those telnet escape se-

quences.

10. data chan

This option causes the rest of snort (rules, other preprocessors) to ignore FTP data channel connections. Using

this option means that NO INSPECTION other than TCP state will be performed on FTP data transfers. It

can be used to improve performance, especially with large file transfers from a trusted source. If your rule set

includes virus-type rules, it is recommended that this option not be used.

Use of the ”data chan” option is deprecated in favor of the ”ignore data chan” option. ”data chan” will be

removed in a future release.

11. ignore data chan <yes|no>

This option causes the rest of Snort (rules, other preprocessors) to ignore FTP data channel connections. Setting

this option to ”yes” means that NO INSPECTION other than TCP state will be performed on FTP data transfers.

It can be used to improve performance, especially with large file transfers from a trusted source. If your rule set

includes virus-type rules, it is recommended that this option not be used.

FTP Server Base Configuration Options

The base FTP server configuration is as follows. Options specified in the configuration file will modify this set of

options. FTP commands are added to the set of allowed commands. The other options will override those in the base

configuration.

89

def_max_param_len 100

ftp_cmds { USER PASS ACCT CWD CDUP SMNT

QUIT REIN TYPE STRU MODE RETR

STOR STOU APPE ALLO REST RNFR

RNTO ABOR DELE RMD MKD PWD LIST

NLST SITE SYST STAT HELP NOOP }

ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC }

ftp_cmds { PORT PASV LPRT LPSV EPRT EPSV }

ftp_cmds { FEAT OPTS }

ftp_cmds { MDTM REST SIZE MLST MLSD }

alt_max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST NOOP }

cmd_validity MODE < char SBC >

cmd_validity STRU < char FRPO [string] >

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char I | char L [number] } >

cmd_validity PORT < host_port >

cmd_validity LPRT < long_host_port >

cmd_validity EPRT < extd_host_port >

cmd_validity EPSV < [{ ’1’ | ’2’ | ’ALL’ }] >

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client configurations has two types: default, and by IP address.

Default This configuration supplies the default client configuration for any FTP client that is not individually con-

figured. Most of your FTP clients will most likely end up using the default configuration.

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: \

ftp client default bounce no max_resp_len 200

Configuration by IP Address This format is very similar to “default”, the only difference being that specific IPs

can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: \

ftp client 10.1.1.1 bounce yes max_resp_len 500

FTP Client Configuration Options

1. max resp len <number>

This specifies the maximum allowed response length to an FTP command accepted by the client. It can be used

as a basic buffer overflow detection.

2. bounce <yes|no>

This option turns on detection and alerting of FTP bounce attacks. An FTP bounce attack occurs when the FTP

PORT command is issued and the specified host does not match the host of the client.

3. bounce to < CIDR,[port|portlow,porthi] >

90

When the bounce option is turned on, this allows the PORT command to use the IP address (in CIDR format) and

port (or inclusive port range) without generating an alert. It can be used to deal with proxied FTP connections

where the FTP data channel is different from the client.

A few examples:

• Allow bounces to 192.162.1.1 port 20020 – i.e., the use of PORT 192,168,1,1,78,52.

bounce_to { 192.168.1.1,20020 }

• Allow bounces to 192.162.1.1 ports 20020 through 20040 – i.e., the use of PORT 192,168,1,1,78,xx,

where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }

• Allow bounces to 192.162.1.1 port 20020 and 192.168.1.2 port 20030.

bounce_to { 192.168.1.1,20020 192.168.1.2,20030 }

• Allows bounces to IPv6 address fe8::5 port 59340.

bounce_to { fe8::5,59340 }

4. telnet cmds <yes|no>

This option turns on detection and alerting when telnet escape sequences are seen on the FTP command channel.

Injection of telnet escape sequences could be used as an evasion attempt on an FTP command channel.

5. ignore telnet erase cmds <yes|no>

This option allows Snort to ignore telnet escape sequences for erase character (TNC EAC) and erase line (TNC

EAL) when normalizing FTP command channel. Some FTP clients do not process those telnet escape sequences.

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: \

global \

encrypted_traffic yes \

inspection_type stateful

preprocessor ftp_telnet_protocol:\

telnet \

normalize \

ayt_attack_thresh 200

This is consistent with the FTP rules as of 18 Sept 2004.

Set CWD to allow parameter length of 200

MODE has an additional mode of Z (compressed)

Check for string formats in USER & PASS commands

Check MDTM commands that set modification time on the file.

preprocessor ftp_telnet_protocol: \

ftp server default \

def_max_param_len 100 \

alt_max_param_len 200 { CWD } \

cmd_validity MODE < char ASBCZ > \

cmd_validity MDTM < [date nnnnnnnnnnnnnn[.n[n[n]]]] string > \

chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \

telnet_cmds yes \

ignore_data_chan yes

preprocessor ftp_telnet_protocol: \

91

ftp client default \

max_resp_len 256 \

bounce yes \

telnet_cmds yes

2.2.12 SSH

The SSH preprocessor detects the following exploits: Challenge-Response Buffer Overflow, CRC 32, Secure CRT,

and the Protocol Mismatch exploit.

Both Challenge-Response Overflow and CRC 32 attacks occur after the key exchange, and are therefore encrypted.

Both attacks involve sending a large payload (20kb+) to the server immediately after the authentication challenge. To

detect the attacks, the SSH preprocessor counts the number of bytes transmitted to the server. If those bytes exceed a

predefined limit within a predefined number of packets, an alert is generated. Since the Challenge-Response Overflow

only effects SSHv2 and CRC 32 only effects SSHv1, the SSH version string exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are observable before the key exchange.

Configuration

By default, all alerts are disabled and the preprocessor checks traffic on port 22.

The available configuration options are described below.

1. server ports {<port> [<port>< ... >]}

This option specifies which ports the SSH preprocessor should inspect traffic to.

2. max encrypted packets < number >

The number of stream reassembled encrypted packets that Snort will inspect before ignoring a given SSH ses-

sion. The SSH vulnerabilities that Snort can detect all happen at the very beginning of an SSH session. Once

max encrypted packets packets have been seen, Snort ignores the session to increase performance. The default

is set to 25. This value can be set from 0 to 65535.

3. max client bytes < number >

The number of unanswered bytes allowed to be transferred before alerting on Challenge-Response Overflow or

CRC 32. This number must be hit before max encrypted packets packets are sent, or else Snort will ignore the

traffic. The default is set to 19600. This value can be set from 0 to 65535.

4. max server version len < number >

The maximum number of bytes allowed in the SSH server version string before alerting on the Secure CRT

server version string overflow. The default is set to 80. This value can be set from 0 to 255.

5. autodetect

Attempt to automatically detect SSH.

6. enable respoverflow

Enables checking for the Challenge-Response Overflow exploit.

7. enable ssh1crc32

Enables checking for the CRC 32 exploit.

8. enable srvoverflow

Enables checking for the Secure CRT exploit.

9. enable protomismatch

Enables checking for the Protocol Mismatch exploit.

92

10. enable badmsgdir

Enable alerts for traffic flowing the wrong direction. For instance, if the presumed server generates client traffic,

or if a client generates server traffic.

11. enable paysize

Enables alerts for invalid payload sizes.

12. enable recognition

Enable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After max encrypted packets is reached, the preprocessor will stop

processing traffic for a given session. If Challenge-Response Overflow or CRC 32 false positive, try increasing the

number of required client bytes with max client bytes.

Example Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 unacknowledged bytes within 20 encrypted packets for the

Challenge-Response Overflow/CRC32 exploits.

preprocessor ssh: \

server_ports { 22 } \

max_client_bytes 19600 \

max_encrypted_packets 20 \

enable_respoverflow \

enable_ssh1crc32

2.2.13 DNS

The DNS preprocessor decodes DNS Responses and can detect the following exploits: DNS Client RData Overflow,

Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it requires Stream preprocessor to be enabled for TCP

decoding.

Configuration

By default, all alerts are disabled and the preprocessor checks traffic on port 53.

The available configuration options are described below.

1. ports {<port> [<port>< ... >]}

This option specifies the source ports that the DNS preprocessor should inspect traffic.

2. enable obsolete types

Alert on Obsolete (per RFC 1035) Record Types

3. enable experimental types

Alert on Experimental (per RFC 1035) Record Types

4. enable rdata overflow

Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnerabilities it checks for are enabled. It will not operate on

TCP sessions picked up midstream, and it will cease operation on a session if it loses state because of missing data

(dropped packets).

93

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS Client RData overflow vulnerability. Do not alert on

obsolete or experimental RData record types.

preprocessor dns: \

ports { 53 } \

enable_rdata_overflow

2.2.14 SSL/TLS

Encrypted traffic should be ignored by Snort for both performance reasons and to reduce false positives. The SSL

Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffic and optionally determines if and when Snort should

stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enabling the SSLPP to inspect port 443 and enabling the noin-

spect encrypted option, only the SSL handshake of each connection will be inspected. Once the traffic is determined

to be encrypted, no further inspection of the data on the connection is made.

By default, SSLPP looks for a handshake followed by encrypted traffic traveling to both sides. If one side responds

with an indication that something has failed, such as the handshake, the session is not marked as encrypted. Verifying

that faultless encrypted traffic is sent from both endpoints ensures two things: the last client-side handshake packet

was not crafted to evade Snort, and that the traffic is legitimately encrypted.

In some cases, especially when packets may be missed, the only observed response from one endpoint will be TCP

ACKs. Therefore, if a user knows that server-side encrypted data can be trusted to mark the session as encrypted, the

user should use the ’trustservers’ option, documented below.

Configuration

1. ports {<port> [<port>< ... >]}

This option specifies which ports SSLPP will inspect traffic on.

By default, SSLPP watches the following ports:

• 443 HTTPS

• 465 SMTPS

• 563 NNTPS

• 636 LDAPS

• 989 FTPS

• 992 TelnetS

• 993 IMAPS

• 994 IRCS

• 995 POPS

2. noinspect encrypted

Disable inspection on traffic that is encrypted. Default is off.

3. max heartbeat length

Maximum length of heartbeat record allowed. This config option is used to detect the heartbleed attacks. The

allowed range is 0 to 65535. Setting the value to 0 turns off the heartbeat length checks. For heartbeat requests,

if the payload size of the request record is greater than the max heartbeat length an alert with sid 3 and gid 137

is generated. For heartbeat responses, if the record size itself is greater than the max heartbeat length an alert

with sid 4 and gid 137 is generated. Default is off.

94

4. trustservers

Disables the requirement that application (encrypted) data must be observed on both sides of the session before

a session is marked encrypted. Use this option for slightly better performance if you trust that your servers are

not compromised. This requires the noinspect encrypted option to be useful. Default is off.

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable inspection on encrypted traffic.

preprocessor ssl: noinspect_encrypted

Rule Options

The following rule options are supported by enabling the ssl preprocessor:

ssl_version

ssl_state

ssl version

The ssl version rule option tracks the version negotiated between the endpoints of the SSL encryption. The

list of version identifiers are below, and more than one identifier can be specified, via a comma separated list.

Lists of identifiers are OR’ed together.

The option will match if any one of the OR’ed versions are used in the SSL connection. To check for two or

more SSL versions in use simultaneously, multiple ssl version rule options should be used.

Syntax

ssl_version: <version-list>

version-list = version | version , version-list

version = ["!"] "sslv2" | "sslv3" | "tls1.0" | "tls1.1" | "tls1.2"

Examples

ssl_version:sslv3;

ssl_version:tls1.0,tls1.1,tls1.2;

ssl_version:!sslv2;

ssl state

The ssl state rule option tracks the state of the SSL encryption during the process of hello and key exchange.

The list of states are below. More than one state can be specified, via a comma separated list, and are OR’ed

together.

The option will match if the connection is currently in any one of the OR’ed states. To ensure the connection

has reached each of a set of states, multiple rules using the ssl state rule option should be used.

Syntax

ssl_state: <state-list>

state-list = state | state , state-list

state = ["!"] "client_hello" | "server_hello" | "client_keyx" | "server_keyx" | "unknown"

Examples

ssl_state:client_hello;

ssl_state:client_keyx,server_keyx;

ssl_state:!server_hello;

95

2.2.15 ARP Spoof Preprocessor

The ARP spoof preprocessor decodes ARP packets and detects ARP attacks, unicast ARP requests, and inconsistent

Ethernet to IP mapping.

When no arguments are specified to arpspoof, the preprocessor inspects Ethernet addresses and the addresses in the

ARP packets. When inconsistency occurs, an alert with GID 112 and SID 2 or 3 is generated.

When ”-unicast” is specified as the argument of arpspoof, the preprocessor checks for unicast ARP requests. An

alert with GID 112 and SID 1 will be generated if a unicast ARP request is detected.

Specify a pair of IP and hardware address as the argument to arpspoof detect host. The host with the IP address

should be on the same layer 2 segment as Snort is. Specify one host IP MAC combo per line. The preprocessor will

use this list when detecting ARP cache overwrite attacks. Alert SID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]

preprocessor arpspoof_detect_host: ip mac

Option Description

ip IP address.

mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detection nor ARP mapping monitoring. The preprocessor merely

looks for Ethernet address inconsistencies.

preprocessor arpspoof

The next example configuration does not do unicast detection but monitors ARP mapping for hosts 192.168.40.1 and

192.168.40.2.

preprocessor arpspoof

preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f:00:f0:0f:01

The third example configuration has unicast detection enabled.

preprocessor arpspoof: -unicast

preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f:00:f0:0f:01

2.2.16 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desegmentation and DCE/RPC defragmentation to avoid

rule evasion using these techniques. SMB desegmentation is performed for the following commands that can be

used to transport DCE/RPC requests and responses: Write, Write Block Raw, Write and Close, Write AndX,

Transaction, Transaction Secondary, Read, Read Block Raw and Read AndX. The following transports are sup-

ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 proxy and server. New rule options have been im-

plemented to improve performance, reduce false positives and reduce the count and complexity of DCE/RPC based

rules.

96

Dependency Requirements

For proper functioning of the preprocessor:

• Stream session tracking must be enabled, i.e. stream5. The preprocessor requires a session tracker to keep its

data.

• Stream reassembly must be performed for TCP sessions. If it is decided that a session is SMB or DCE/RPC, ei-

ther through configured ports, servers or autodetecting, the dcerpc2 preprocessor will enable stream reassembly

for that session if necessary.

• IP defragmentation should be enabled, i.e. the frag3 preprocessor should be enabled and configured.

Target Based

There are enough important differences between Windows and Samba versions that a target based approach has been

implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle or TID and file/named pipe handle or FID must be

used to write data to a named pipe. The binding between these is dependent on OS/software version.

Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to make a request, however, if the TID

used in creating the FID is deleted (via a tree disconnect), the FID that was created using this TID

becomes invalid, i.e. no more requests can be written to that named pipe instance.

Samba greater than 3.0.22

Any valid TID, along with a valid FID can be used to make a request. However, only the UID used

in opening the named pipe can be used to make a request using the FID handle to the named pipe

instance. If the TID used to create the FID is deleted (via a tree disconnect), the FID that was created

using this TID becomes invalid, i.e. no more requests can be written to that named pipe instance. If

the UID used to create the named pipe instance is deleted (via a Logoff AndX), since it is necessary

in making a request to the named pipe, the FID becomes invalid.

Windows 2003

Windows XP

Windows Vista

These Windows versions require strict binding between the UID, TID and FID used to make a request

to a named pipe instance. Both the UID and TID used to open the named pipe instance must be

used when writing data to the same named pipe instance. Therefore, deleting either the UID or TID

invalidates the FID.

Windows 2000

Windows 2000 is interesting in that the first request to a named pipe must use the same binding as that

of the other Windows versions. However, requests after that follow the same binding as Samba 3.0.22

and earlier, i.e. no binding. It also follows Samba greater than 3.0.22 in that deleting the UID or TID

used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commands under an IPC$ tree.

Samba (all versions)

Under an IPC$ tree, does not accept:

97

Open

Write And Close

Read

Read Block Raw

Write Block Raw

Windows (all versions)

Accepts all of the above commands under an IPC$ tree.

AndX command chaining

Windows is very strict in what command combinations it allows to be chained. Samba, on the other hand, is

very lax and allows some nonsensical combinations, e.g. multiple logins and tree connects (only one place to

return handles for these), login/logoff and tree connect/tree disconnect. Ultimately, we don’t want to keep track

of data that the server won’t accept. An evasion possibility would be accepting a fragment in a request that the

server won’t accept that gets sandwiched between an exploit.

Transaction tracking

The differences between a Transaction request and using one of the Write* commands to write data to a

named pipe are that (1) a Transaction performs the operations of a write and a read from the named pipe,

whereas in using the Write* commands, the client has to explicitly send one of the Read* requests to tell the

server to send the response and (2) a Transaction request is not written to the named pipe until all of the data is

received (via potential Transaction Secondary requests) whereas with the Write* commands, data is written

to the named pipe as it is received by the server. Multiple Transaction requests can be made simultaneously to

the same named pipe. These requests can also be segmented with Transaction Secondary commands. What

distinguishes them (when the same named pipe is being written to, i.e. having the same FID) are fields in the

SMB header representing a process id (PID) and multiplex id (MID). The PID represents the process this request

is a part of. An MID represents different sub-processes within a process (or under a PID). Segments for each

”thread” are stored separately and written to the named pipe when all segments are received. It is necessary to

track this so as not to munge these requests together (which would be a potential evasion opportunity).

Windows (all versions)

Uses a combination of PID and MID to define a ”thread”.

Samba (all versions)

Uses just the MID to define a ”thread”.

Multiple Bind Requests

A Bind request is the first request that must be made in a connection-oriented DCE/RPC session in order to

specify the interface/interfaces that one wants to communicate with.

Windows (all versions)

For all of the Windows versions, only one Bind can ever be made on a session whether or not it

succeeds or fails. Any binding after that must use the Alter Context request. If another Bind is

made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier

Any amount of Bind requests can be made.

Samba later than 3.0.20

Another Bind request can be made if the first failed and no interfaces were successfully bound to. If

a Bind after a successful Bind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

98

Each fragment in a fragmented request carries the context id of the bound interface it wants to make the request

to.

Windows (all versions)

The context id that is ultimately used for the request is contained in the first fragment. The context id

field in any other fragment can contain any value.

Samba (all versions)

The context id that is ultimately used for the request is contained in the last fragment. The context id

field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

Each fragment in a fragmented request carries an operation number (opnum) which is more or less a handle to

a function offered by the interface.

Samba (all versions)

Windows 2000

Windows 2003

Windows XP

The opnum that is ultimately used for the request is contained in the last fragment. The opnum field

in any other fragment can contain any value.

Windows Vista

The opnum that is ultimately used for the request is contained in the first fragment. The opnum field

in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differently for Windows and Samba.

Windows (all versions)

The byte order of the stub data is that which was used in the Bind request.

Samba (all versions)

The byte order of the stub data is that which is used in the request carrying the stub data.

Configuration

The dcerpc2 preprocessor has a global configuration and one or more server configurations. The global preprocessor

configuration name is dcerpc2 and the server preprocessor configuration name is dcerpc2 server.

Global Configuration

preprocessor dcerpc2

The global dcerpc2 configuration is required. Only one global dcerpc2 configuration can be specified.

Option syntax

99

Option Argument Required Default

memcap <memcap> NO memcap 102400

disable defrag NONE NO OFF

max frag len <max-frag-len> NO OFF

events <events> NO OFF

reassemble threshold <re-thresh> NO OFF

disabled NONE NO OFF

smb fingerprint policy <fp-policy> NO OFF

smb legacy mode NONE NO OFF

memcap = 1024-4194303 (kilobytes)

max-frag-len = 1514-65535

events = pseudo-event | event | ’[’ event-list ’]’

pseudo-event = "none" | "all"

event-list = event | event ’,’ event-list

event = "memcap" | "smb" | "co" | "cl"

re-thresh = 0-65535

fp-policy = "server" | "client" | "both"

Option explanations

memcap

Specifies the maximum amount of run-time memory that can be allocated. Run-time memory includes any

memory allocated after configuration. Default is 100 MB.

disabled

Disables the preprocessor. By default this value is turned off. When the preprocessor is disabled only the

memcap option is applied when specified with the configuration.

disable defrag

Tells the preprocessor not to do DCE/RPC defragmentation. Default is to do defragmentation.

max frag len

Specifies the maximum fragment size that will be added to the defragmentation module. If a fragment is

greater than this size, it is truncated before being added to the defragmentation module. The allowed range

for this option is 1514 - 65535.

events

Specifies the classes of events to enable. (See Events section for an enumeration and explanation of events.)

memcap

Only one event. If the memcap is reached or exceeded, alert.

smb

Alert on events related to SMB processing.

co

Stands for connection-oriented DCE/RPC. Alert on events related to connection-oriented DCE/RPC

processing.

cl

Stands for connectionless DCE/RPC. Alert on events related to connectionless DCE/RPC pro-

cessing.

reassemble threshold

100

Specifies a minimum number of bytes in the DCE/RPC desegmentation and defragmentation buffers before

creating a reassembly packet to send to the detection engine. This option is useful in inline mode so as to

potentially catch an exploit early before full defragmentation is done. A value of 0 supplied as an argument

to this option will, in effect, disable this option. Default is disabled.

smb fingerprint policy

By default, SMBv1, SMBv2, and SMBv3 files are inspected. If legacy mode is configured, only SMBv1

file inspection is enabled.

legacy mode

In the initial phase of an SMB session, the client needs to authenticate with a SessionSetupAndX. Both the

request and response to this command contain OS and version information that can allow the preprocessor

to dynamically set the policy for a session which allows for better protection against Windows and Samba

specific evasions.

Option examples

memcap 30000

max_frag_len 16840

events none

events all

events smb

events co

events [co]

events [smb, co]

events [memcap, smb, co, cl]

reassemble_threshold 500

smb_fingerprint_policy both

smb_fingerprint_policy client

smb_legacy_mode

Configuration examples

preprocessor dcerpc2

preprocessor dcerpc2: memcap 500000

preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb

preprocessor dcerpc2: memcap 50000, events [memcap, smb, co, cl], max_frag_len 14440

preprocessor dcerpc2: disable_defrag, events [memcap, smb]

preprocessor dcerpc2: reassemble_threshold 500

preprocessor dcerpc2: memcap 50000, events [memcap, smb, co, cl], max_frag_len 14440, smb_fingerprint_policy both

Default global configuration

preprocessor dcerpc2: memcap 102400

Server Configuration

preprocessor dcerpc2_server

The dcerpc2 server configuration is optional. A dcerpc2 server configuration must start with default or net

options. The default and net options are mutually exclusive. At most one default configuration can be specified. If

no default configuration is specified, default values will be used for the default configuration. Zero or more net

configurations can be specified. For any dcerpc2 server configuration, if non-required options are not specified, the

defaults will be used. When processing DCE/RPC traffic, the default configuration is used if no net configurations

match. If a net configuration matches, it will override the default configuration. A net configuration matches if the

packet’s server IP address matches an IP address or net specified in the net configuration. The net option supports

IPv6 addresses. Note that port and ip variables defined in snort.conf CANNOT be used.

Option syntax

101

Option Argument Required Default

default NONE YES NONE

net <net> YES NONE

policy <policy> NO policy WinXP

detect <detect> NO detect [smb [139,445], tcp 135,

udp 135, rpc-over-http-server

593]

autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,

rpc-over-http-server 1025:]

no autodetect http proxy ports NONE NO DISABLED (The preprocessor autodetects

on all proxy ports by default)

smb invalid shares <shares> NO NONE

smb max chain <max-chain> NO smb max chain 3

smb file inspection <file-inspect> NO smb file inspection off

net = ip | ’[’ ip-list ’]’

ip-list = ip | ip ’,’ ip-list

ip = ip-addr | ip-addr ’/’ prefix | ip4-addr ’/’ netmask

ip-addr = ip4-addr | ip6-addr

ip4-addr = a valid IPv4 address

ip6-addr = a valid IPv6 address (can be compressed)

prefix = a valid CIDR

netmask = a valid netmask

policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |

"Samba" | "Samba-3.0.22" | "Samba-3.0.20"

detect = "none" | detect-opt | ’[’ detect-list ’]’

detect-list = detect-opt | detect-opt ’,’ detect-list

detect-opt = transport | transport port-item |

transport ’[’ port-list ’]’

transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |

"rpc-over-http-server"

port-list = port-item | port-item ’,’ port-list

port-item = port | port-range

port-range = ’:’ port | port ’:’ | port ’:’ port

port = 0-65535

shares = share | ’[’ share-list ’]’

share-list = share | share ’,’ share-list

share = word | ’"’ word ’"’ | ’"’ var-word ’"’

word = graphical ASCII characters except ’,’ ’"’ ’]’ ’[’ ’$’

var-word = graphical ASCII characters except ’,’ ’"’ ’]’ ’[’

max-chain = 0-255

file-inspect = file-arg | ’[’ file-list ’]’

file-arg = "off" | "on" | "only"

file-list = file-arg [’,’ "file-depth" <int64_t>]

Because the Snort main parser treats ’$’ as the start of a variable and tries to expand it, shares with ’$’ must be

enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default server configuration.

net

Specifies that this configuration is an IP or net specific configuration. The configuration will only apply to

the IP addresses and nets supplied as an argument.

policy

Specifies the target-based policy to use when processing. Default is ”WinXP”.

102

detect

Specifies the DCE/RPC transport and server ports that should be detected on for the transport. Defaults

are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RPC over HTTP server and 80 for RPC

over HTTP proxy.

autodetect

Specifies the DCE/RPC transport and server ports that the preprocessor should attempt to autodetect on

for the transport. The autodetect ports are only queried if no detect transport/ports match the packet. The

order in which the preprocessor will attempt to autodetect will be - TCP/UDP, RPC over HTTP server,

RPC over HTTP proxy and lastly SMB. Note that most dynamic DCE/RPC ports are above 1024 and ride

directly over TCP or UDP. It would be very uncommon to see SMB on anything other than ports 139 and

445. Defaults are 1025-65535 for TCP, UDP and RPC over HTTP server.

no autodetect http proxy ports

By default, the preprocessor will always attempt to autodetect for ports specified in the detect configuration

for rpc-over-http-proxy. This is because the proxy is likely a web server and the preprocessor should not

look at all web traffic. This option is useful if the RPC over HTTP proxy configured with the detect option

is only used to proxy DCE/RPC traffic. Default is to autodetect on RPC over HTTP proxy detect ports.

smb invalid shares

Specifies SMB shares that the preprocessor should alert on if an attempt is made to connect to them via a

Tree Connect or Tree Connect AndX. Default is empty.

smb max chain

Specifies the maximum amount of AndX command chaining that is allowed before an alert is generated.

Default maximum is 3 chained commands. A value of 0 disables this option. This value can be set from 0

to 255.

smb file inspection

Instructs the preprocessor to do inspection of normal SMB file transfers. This includes doing file type and

signature through the file API as well as setting a pointer for the file data rule option. Note that the

file-depth option only applies to the maximum amount of file data for which it will set the pointer for

the file data rule option. For file type and signature it will use the value configured for the file API.

If only is specified, the preprocessor will only do SMB file inspection, i.e. it will not do any DCE/RPC

tracking or inspection. If on is specified with no arguments, the default file depth is 16384 bytes. An

argument of -1 to file-depth disables setting the pointer for file data, effectively disabling SMB file

inspection in rules. An argument of 0 to file-depth means unlimited. Default is off, i.e. no SMB file

inspection is done in the preprocessor. SMBv1, SMBv2, and SMBv3 are supported.

Option examples

net 192.168.0.10

net 192.168.0.0/24

net [192.168.0.0/24]

net 192.168.0.0/255.255.255.0

net feab:45b3:ab92:8ac4:d322:007f:e5aa:7845

net feab:45b3:ab92:8ac4:d322:007f:e5aa:7845/128

net feab:45b3::/32

net [192.168.0.10, feab:45b3::/32]

net [192.168.0.0/24, feab:45b3:ab92:8ac4:d322:007f:e5aa:7845]

policy Win2000

policy Samba-3.0.22

detect none

detect smb

detect [smb]

detect smb 445

103

detect [smb 445]

detect smb [139,445]

detect [smb [139,445]]

detect [smb, tcp]

detect [smb 139, tcp [135,2103]]

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server [593,6002:6004]]

autodetect none

autodetect tcp

autodetect [tcp]

autodetect tcp 2025:

autodetect [tcp 2025:]

autodetect tcp [2025:3001,3003:]

autodetect [tcp [2025:3001,3003:]]

autodetect [tcp, udp]

autodetect [tcp 2025:, udp 2025:]

autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6001,6005:]]

smb_invalid_shares private

smb_invalid_shares "private"

smb_invalid_shares "C$"

smb_invalid_shares [private, "C$"]

smb_invalid_shares ["private", "C$"]

smb_max_chain 1

smb_file_inspection on

smb_file_inspection off

smb_file_inspection [on, file-depth -1]

smb_file_inspection [on, file-depth 0]

smb_file_inspection [on, file-depth 4294967296]

smb_file_inspection [only, file-depth -1]

Configuration examples

preprocessor dcerpc2_server: \

default

preprocessor dcerpc2_server: \

default, policy Win2000

preprocessor dcerpc2_server: \

default, policy Win2000, detect [smb, tcp], autodetect tcp 1025:, \

smb_invalid_shares ["C$", "D$", "ADMIN$"]

preprocessor dcerpc2_server: net 10.4.10.0/24, policy Win2000

preprocessor dcerpc2_server: \

net [10.4.10.0/24,feab:45b3::/126], policy WinVista, smb_max_chain 1

preprocessor dcerpc2_server: \

net [10.4.10.0/24,feab:45b3::/126], policy WinVista, \

detect [smb, tcp, rpc-over-http-proxy 8081],

autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:]], \

smb_invalid_shares ["C$", "ADMIN$"], no_autodetect_http_proxy_ports

preprocessor dcerpc2_server: \

net [10.4.11.56,10.4.11.57], policy Samba, detect smb, autodetect none

preprocessor dcerpc2_server: default, policy WinXP, \

smb_file_inspection [on, file-depth 0]

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \

autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \

smb_max_chain 3, smb_file_inspection off

Complete dcerpc2 default configuration

preprocessor dcerpc2: memcap 102400

preprocessor dcerpc2_server: \

104

default, policy WinXP, \

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-server 593], \

autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 1025:], \

smb_max_chain 3, smb_file_inspection off

Events

The preprocessor uses GID 133 to register events.

Memcap events

SID Description

1 If the memory cap is reached and the preprocessor is configured to alert.

SMB events

SID Description

2 An invalid NetBIOS Session Service type was specified in the header. Valid types are: Message,

Request (only from client), Positive Response (only from server), Negative Response

(only from server), Retarget Response (only from server) and Keep Alive.

3 An SMB message type was specified in the header. Either a request was made by the server or a

response was given by the client.

4 The SMB id does not equal \xffSMB or \xfeSMB.

5 The word count of the command header is invalid. SMB commands have pretty specific word

counts and if the preprocessor sees a command with a word count that doesn’t jive with that

command, the preprocessor will alert.

6 Some commands require a minimum number of bytes after the command header. If a command

requires this and the byte count is less than the minimum required byte count for that command,

the preprocessor will alert.

7 Some commands, especially the commands from the SMB Core implementation require a data

format field that specifies the kind of data that will be coming next. Some commands require a

specific format for the data. The preprocessor will alert if the format is not that which is expected

for that command.

8 Many SMB commands have a field containing an offset from the beginning of the SMB header to

where the data the command is carrying starts. If this offset puts us before data that has already

been processed or after the end of payload, the preprocessor will alert.

9 Some SMB commands, such as Transaction, have a field containing the total amount of data

to be transmitted. If this field is zero, the preprocessor will alert.

10 The preprocessor will alert if the NetBIOS Session Service length field contains a value less than

the size of an SMB header.

11 The preprocessor will alert if the remaining NetBIOS packet length is less than the size of the

SMB command header to be decoded.

12 The preprocessor will alert if the remaining NetBIOS packet length is less than the size of the

SMB command byte count specified in the command header.

13 The preprocessor will alert if the remaining NetBIOS packet length is less than the size of the

SMB command data size specified in the command header.

14 The preprocessor will alert if the total data count specified in the SMB command header is less

than the data size specified in the SMB command header. (Total data count must always be

greater than or equal to current data size.)

15 The preprocessor will alert if the total amount of data sent in a transaction is greater than the total

data count specified in the SMB command header.

105

16 The preprocessor will alert if the byte count specified in the SMB command header is less than

the data size specified in the SMB command. (The byte count must always be greater than or

equal to the data size.)

17 Some of the Core Protocol commands (from the initial SMB implementation) require that the

byte count be some value greater than the data size exactly. The preprocessor will alert if the

byte count minus a predetermined amount based on the SMB command is not equal to the data

size.

18 For the Tree Connect command (and not the Tree Connect AndX command), the preprocessor

has to queue the requests up and wait for a server response to determine whether or not an IPC

share was successfully connected to (which is what the preprocessor is interested in). Unlike

the Tree Connect AndX response, there is no indication in the Tree Connect response as to

whether the share is IPC or not. There should be under normal circumstances no more than a few

pending tree connects at a time and the preprocessor will alert if this number is excessive.

19 After a client is done writing data using the Write* commands, it issues a Read* command to

the server to tell it to send a response to the data it has written. In this case the preprocessor

is concerned with the server response. The Read* request contains the file id associated with a

named pipe instance that the preprocessor will ultimately send the data to. The server response,

however, does not contain this file id, so it need to be queued with the request and dequeued with

the response. If multiple Read* requests are sent to the server, they are responded to in the order

they were sent. There should be under normal circumstances no more than a few pending Read*

requests at a time and the preprocessor will alert if this number is excessive.

20 The preprocessor will alert if the number of chained commands in a single request is greater than

or equal to the configured amount (default is 3).

21 With AndX command chaining it is possible to chain multiple Session Setup AndX commands

within the same request. There is, however, only one place in the SMB header to return a login

handle (or Uid). Windows does not allow this behavior, however Samba does. This is anomalous

behavior and the preprocessor will alert if it happens.

22 With AndX command chaining it is possible to chain multiple Tree Connect AndX commands

within the same request. There is, however, only one place in the SMB header to return a tree

handle (or Tid). Windows does not allow this behavior, however Samba does. This is anomalous

behavior and the preprocessor will alert if it happens.

23 When a Session Setup AndX request is sent to the server, the server responds (if the client

successfully authenticates) which a user id or login handle. This is used by the client in subse-

quent requests to indicate that it has authenticated. A Logoff AndX request is sent by the client

to indicate it wants to end the session and invalidate the login handle. With commands that are

chained after a Session Setup AndX request, the login handle returned by the server is used for

the subsequent chained commands. The combination of a Session Setup AndX command with

a chained Logoff AndX command, essentially logins in and logs off in the same request and is

anomalous behavior. The preprocessor will alert if it sees this.

24 A Tree Connect AndX command is used to connect to a share. The Tree Disconnect com-

mand is used to disconnect from that share. The combination of a Tree Connect AndX com-

mand with a chained Tree Disconnect command, essentially connects to a share and discon-

nects from the same share in the same request and is anomalous behavior. The preprocessor will

alert if it sees this.

25 An Open AndX or Nt Create AndX command is used to open/create a file or named pipe. (The

preprocessor is only interested in named pipes as this is where DCE/RPC requests are written to.)

The Close command is used to close that file or named pipe. The combination of a Open AndX

or Nt Create AndX command with a chained Close command, essentially opens and closes the

named pipe in the same request and is anomalous behavior. The preprocessor will alert if it sees

this.

26 The preprocessor will alert if it sees any of the invalid SMB shares configured. It looks for a

Tree Connect or Tree Connect AndX to the share.

48 The preprocessor will alert if a data count for a Core dialect write command is zero.

106

49 For some of the Core dialect commands such as Write and Read, there are two data count fields,

one in the main command header and one in the data format section. If these aren’t the same, the

preprocessor will alert.

50 In the initial negotiation phase of an SMB session, the server in a Negotiate response and

the client in a SessionSetupAndX request will advertise the maximum number of outstanding

requests supported. The preprocessor will alert if the lesser of the two is exceeded.

51 When a client sends a request it uses a value called the MID (multiplex id) to match a response,

which the server is supposed to echo, to a request. If there are multiple outstanding requests with

the same MID, the preprocessor will alert.

52 In the Negotiate request a client gives a list of SMB dialects it supports, normally in order

from least desirable to most desirable and the server responds with the index of the dialect to

be used on the SMB session. Anything less than ”NT LM 0.12” would be very odd these days

(even Windows 98 supports it) and the preprocessor will alert if the client doesn’t offer it as a

supported dialect or the server chooses a lesser dialect.

53 There are a number of commands that are considered deprecated and/or obsolete by Microsoft

(see MS-CIFS and MS-SMB). If the preprocessor detects the use of a deprecated/obsolete com-

mand used it will alert.

54 There are some commands that can be used that can be considered unusual in

the context they are used. These include some of the transaction commands

such as: SMB COM TRANSACTION / TRANS READ NMPIPE SMB COM TRANSACTION /

TRANS WRITE NMPIPE SMB COM TRANSACTION2 / TRANS2 OPEN2 SMB COM NT TRANSACT

/ NT TRANSACT CREATE The preprocessor will alert if it detects unusual use of a command.

55 Transaction commands have a setup count field that indicates the number of 16bit words in the

transaction setup. The preprocessor will alert if the setup count is invalid for the transaction

command / sub command.

56 There can be only one Negotiate transaction per session and it is the first thing a client and server

do to determine the SMB dialect each supports. The preprocessor will alert if the client attempts

multiple dialect negotiations.

57 Malware will often set a file’s attributes to ReadOnly/Hidden/System if it is successful in in-

stalling itself as a Windows service or is able to write an autorun.inf file since it doesn’t want

the user to see the file and the default folder options in Windows is not to display Hidden

files. The preprocessor will alert if it detects a client attempt to set a file’s attributes to Read-

Only/Hidden/System.

58 File offset provided is greater than file size specified. This is applied to read / write requests for

file.

59 Nextcommand specified in SMBv2 or SMBv3 header is beyond payload boundary.

Connection-oriented DCE/RPC events

SID Description

27 The preprocessor will alert if the connection-oriented DCE/RPC major version contained in the

header is not equal to 5.

28 The preprocessor will alert if the connection-oriented DCE/RPC minor version contained in the

header is not equal to 0.

29 The preprocessor will alert if the connection-oriented DCE/RPC PDU type contained in the

header is not a valid PDU type.

30 The preprocessor will alert if the fragment length defined in the header is less than the size of the

header.

31 The preprocessor will alert if the remaining fragment length is less than the remaining packet

size.

32 The preprocessor will alert if in a Bind or Alter Context request, there are no context items

specified.

107

33 The preprocessor will alert if in a Bind or Alter Context request, there are no transfer syntaxes

to go with the requested interface.

34 The preprocessor will alert if a non-last fragment is less than the size of the negotiated maximum

fragment length. Most evasion techniques try to fragment the data as much as possible and

usually each fragment comes well below the negotiated transmit size.

35 The preprocessor will alert if a fragment is larger than the maximum negotiated fragment length.

36 The byte order of the request data is determined by the Bind in connection-oriented DCE/RPC

for Windows. It is anomalous behavior to attempt to change the byte order mid-session.

37 The call id for a set of fragments in a fragmented request should stay the same (it is incremented

for each complete request). The preprocessor will alert if it changes in a fragment mid-request.

38 The operation number specifies which function the request is calling on the bound interface. If a

request is fragmented, this number should stay the same for all fragments. The preprocessor will

alert if the opnum changes in a fragment mid-request.

39 The context id is a handle to a interface that was bound to. If a request if fragmented, this number

should stay the same for all fragments. The preprocessor will alert if the context id changes in a

fragment mid-request.

Connectionless DCE/RPC events

SID Description

40 The preprocessor will alert if the connectionless DCE/RPC major version is not equal to 4.

41 The preprocessor will alert if the connectionless DCE/RPC PDU type is not a valid PDU type.

42 The preprocessor will alert if the packet data length is less than the size of the connectionless

header.

43 The preprocessor will alert if the sequence number uses in a request is the same or less than a

previously used sequence number on the session. In testing, wrapping the sequence number space

produces strange behavior from the server, so this should be considered anomalous behavior.

Rule Options

New rule options are supported by enabling the dcerpc2 preprocessor:

dce_iface

dce_opnum

dce_stub_data

New modifiers to existing byte test and byte jump rule options:

byte_test:dce

byte_jump:dce

dce iface

For DCE/RPC based rules it has been necessary to set flow-bits based on a client bind to a service to avoid

false positives. It is necessary for a client to bind to a service before being able to make a call to it. When a

client sends a bind request to the server, it can, however, specify one or more service interfaces to bind to. Each

interface is represented by a UUID. Each interface UUID is paired with a unique index (or context id) that future

requests can use to reference the service that the client is making a call to. The server will respond with the

108

interface UUIDs it accepts as valid and will allow the client to make requests to those services. When a client

makes a request, it will specify the context id so the server knows what service the client is making a request

to. Instead of using flow-bits, a rule can simply ask the preprocessor, using this rule option, whether or not the

client has bound to a specific interface UUID and whether or not this client request is making a request to it.

This can eliminate false positives where more than one service is bound to successfully since the preprocessor

can correlate the bind UUID to the context id used in the request. A DCE/RPC request can specify whether

numbers are represented as big endian or little endian. The representation of the interface UUID is different

depending on the endianness specified in the DCE/RPC previously requiring two rules - one for big endian and

one for little endian. The preprocessor eliminates the need for two rules by normalizing the UUID. An interface

contains a version. Some versions of an interface may not be vulnerable to a certain exploit. Also, a DCE/RPC

request can be broken up into 1 or more fragments. Flags (and a field in the connectionless header) are set in the

DCE/RPC header to indicate whether the fragment is the first, a middle or the last fragment. Many checks for

data in the DCE/RPC request are only relevant if the DCE/RPC request is a first fragment (or full request), since

subsequent fragments will contain data deeper into the DCE/RPC request. A rule which is looking for data,

say 5 bytes into the request (maybe it’s a length field), will be looking at the wrong data on a fragment other

than the first, since the beginning of subsequent fragments are already offset some length from the beginning of

the request. This can be a source of false positives in fragmented DCE/RPC traffic. By default it is reasonable

to only evaluate if the request is a first fragment (or full request). However, if the any frag option is used to

specify evaluating on all fragments.

Syntax

dce_iface:<uuid>[, <operator><version>][, any_frag];

uuid = hexlong ’-’ hexshort ’-’ hexshort ’-’ 2hexbyte ’-’ 6hexbyte

hexlong = 4hexbyte

hexshort = 2hexbyte

hexbyte = 2HEXDIGIT

operator = ’<’ | ’>’ | ’=’ | ’!’

version = 0-65535

Examples

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, <2;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, any_frag;

dce_iface:4b324fc8-1670-01d3-1278-5a47bf6ee188, =1, any_frag;

This option is used to specify an interface UUID. Optional arguments are an interface version and operator to

specify that the version be less than (’<’), greater than (’>’), equal to (’=’) or not equal to (’!’) the version

specified. Also, by default the rule will only be evaluated for a first fragment (or full request, i.e. not a fragment)

since most rules are written to start at the beginning of a request. The any frag argument says to evaluate for

middle and last fragments as well. This option requires tracking client Bind and Alter Context requests as

well as server Bind Ack and Alter Context responses for connection-oriented DCE/RPC in the preprocessor.

For each Bind and Alter Context request, the client specifies a list of interface UUIDs along with a handle

(or context id) for each interface UUID that will be used during the DCE/RPC session to reference the interface.

The server response indicates which interfaces it will allow the client to make requests to - it either accepts

or rejects the client’s wish to bind to a certain interface. This tracking is required so that when a request is

processed, the context id used in the request can be correlated with the interface UUID it is a handle for.

hexlong and hexshort will be specified and interpreted to be in big endian order (this is usually the default

way an interface UUID will be seen and represented). As an example, the following Messenger interface UUID

as taken off the wire from a little endian Bind request:

|f8 91 7b 5a 00 ff d0 11 a9 b2 00 c0 4f b6 e6 fc|

must be written as:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

The same UUID taken off the wire from a big endian Bind request:

109

|5a 7b 91 f8 ff 00 11 d0 a9 b2 00 c0 4f b6 e6 fc|

must be written the same way:

5a7b91f8-ff00-11d0-a9b2-00c04fb6e6fc

This option matches if the specified interface UUID matches the interface UUID (as referred to by the context

id) of the DCE/RPC request and if supplied, the version operation is true. This option will not match if the

fragment is not a first fragment (or full request) unless the any frag option is supplied in which case only the

interface UUID and version need match. Note that a defragmented DCE/RPC request will be considered a full

request.

△!
NOTE

Using this rule option will automatically insert fast pattern contents into the fast pattern matcher. For UDP

rules, the interface UUID, in both big and little endian format will be inserted into the fast pattern matcher.

For TCP rules, (1) if the rule option flow:to server|from client is used, |05 00 00| will be inserted into

the fast pattern matcher, (2) if the rule option flow:from server|to client is used, |05 00 02| will be

inserted into the fast pattern matcher and (3) if the flow isn’t known, |05 00| will be inserted into the fast

pattern matcher. Note that if the rule already has content rule options in it, the best (meaning longest) pattern

will be used. If a content in the rule uses the fast pattern rule option, it will unequivocally be used over

the above mentioned patterns.

dce opnum

The opnum represents a specific function call to an interface. After is has been determined that a client has

bound to a specific interface and is making a request to it (see above - dce iface) usually we want to know

what function call it is making to that service. It is likely that an exploit lies in the particular DCE/RPC function

call.

Syntax

dce_opnum:<opnum-list>;

opnum-list = opnum-item | opnum-item ’,’ opnum-list

opnum-item = opnum | opnum-range

opnum-range = opnum ’-’ opnum

opnum = 0-65535

Examples

dce_opnum:15;

dce_opnum:15-18;

dce_opnum:15, 18-20;

dce_opnum:15, 17, 20-22;

This option is used to specify an opnum (or operation number), opnum range or list containing either or both

opnum and/or opnum-range. The opnum of a DCE/RPC request will be matched against the opnums specified

with this option. This option matches if any one of the opnums specified match the opnum of the DCE/RPC

request.

dce stub data

Since most netbios rules were doing protocol decoding only to get to the DCE/RPC stub data, i.e. the remote

procedure call or function call data, this option will alleviate this need and place the cursor at the beginning of

the DCE/RPC stub data. This reduces the number of rule option checks and the complexity of the rule.

This option takes no arguments.

Example

110

dce_stub_data;

This option is used to place the cursor (used to walk the packet payload in rules processing) at the beginning

of the DCE/RPC stub data, regardless of preceding rule options. There are no arguments to this option. This

option matches if there is DCE/RPC stub data.

The cursor is moved to the beginning of the stub data. All ensuing rule options will be considered ”sticky”

to this buffer. The first rule option following dce stub data should use absolute location modifiers if it is

position-dependent. Subsequent rule options should use a relative modifier if they are meant to be relative to a

previous rule option match in the stub data buffer. Any rule option that does not specify a relative modifier will

be evaluated from the start of the stub data buffer. To leave the stub data buffer and return to the main payload

buffer, use the pkt data rule option - see section 3.5.27 for details).

byte test and byte jump with dce

A DCE/RPC request can specify whether numbers are represented in big or little endian. These rule options will

take as a new argument dce and will work basically the same as the normal byte test/byte jump, but since

the DCE/RPC preprocessor will know the endianness of the request, it will be able to do the correct conversion.

byte test

Syntax

byte_test:<convert>, [!]<operator>, <value>, <offset> [, relative], dce;

convert = 1 | 2 | 4 (only with option "dce")

operator = ’<’ | ’=’ | ’>’ | ’<=’ | ’>=’ | ’&’ | ’ˆ’

value = 0 - 4294967295

offset = -65535 to 65535

Examples

byte_test:4, >, 35000, 0, relative, dce;

byte_test:2, !=, 2280, -10, relative, dce;

When using the dce argument to a byte test, the following normal byte test arguments will not be

allowed: big, little, string, hex, dec and oct.

byte jump

Syntax

byte_jump:<convert>, <offset>[, relative][, multiplier <mult_value>] \

[, align][, post_offset <adjustment_value>], dce;

convert = 1 | 2 | 4 (only with option "dce")

offset = -65535 to 65535

mult_value = 0 - 65535

adjustment_value = -65535 to 65535

Example

byte_jump:4,-4,relative,align,multiplier 2,post_offset -4,dce;

When using the dce argument to a byte jump, the following normal byte jump arguments will not be

allowed: big, little, string, hex, dec, oct and from beginning.

Example of rule complexity reduction

The following two rules using the new rule options replace 64 (set and isset flowbit) rules that are necessary if

the new rule options are not used:

alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593,1024:] \

(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:established,to_server; \

dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_opnum:0-11; dce_stub_data; \

pcre:"/ˆ.{12}(\x00\x00\x00\x00|.{12})/s"; byte_jump:4,-4,relative,align,dce; \

byte_test:4,>,256,4,relative,dce; reference:bugtraq,23470; reference:cve,2007-1748; \

classtype:attempted-admin; sid:1000068;)

111

alert udp $EXTERNAL_NET any -> $HOME_NET [135,1024:] \

(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:established,to_server; \

dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_opnum:0-11; dce_stub_data; \

pcre:"/ˆ.{12}(\x00\x00\x00\x00|.{12})/s"; byte_jump:4,-4,relative,align,dce; \

byte_test:4,>,256,4,relative,dce; reference:bugtraq,23470; reference:cve,2007-1748; \

classtype:attempted-admin; sid:1000069;)

2.2.17 Sensitive Data Preprocessor

The Sensitive Data preprocessor is a Snort module that performs detection and filtering of Personally Identifiable

Information (PII). This information includes credit card numbers, U.S. Social Security numbers, and email addresses.

A limited regular expression syntax is also included for defining your own PII.

Dependencies

The Stream preprocessor must be enabled for the Sensitive Data preprocessor to work.

Preprocessor Configuration

Sensitive Data configuration is split into two parts: the preprocessor config, and the rule options. The preprocessor

config starts with:

preprocessor sensitive_data:

Option syntax

Option Argument Required Default

alert threshold <number> NO alert threshold 25

mask output NONE NO OFF

ssn file <filename> NO OFF

alert_threshold = 1 - 65535

Option explanations

alert threshold

The preprocessor will alert when any combination of PII are detected in a session. This option specifies

how many need to be detected before alerting. This should be set higher than the highest individual count

in your ”sd pattern” rules.

mask output

This option replaces all but the last 4 digits of a detected PII with ”X”s. This is only done on credit card &

Social Security numbers, where an organization’s regulations may prevent them from seeing unencrypted

numbers.

ssn file

A Social Security number is broken up into 3 sections: Area (3 digits), Group (2 digits), and Serial (4

digits). On a monthly basis, the Social Security Administration publishes a list of which Group numbers

are in use for each Area. These numbers can be updated in Snort by supplying a CSV file with the new

maximum Group numbers to use. By default, Snort recognizes Social Security numbers issued up through

November 2009.

Example preprocessor config

112

preprocessor sensitive_data: alert_threshold 25 \

mask_output \

ssn_file ssn_groups_Jan10.csv

Rule Options

Snort rules are used to specify which PII the preprocessor should look for. A new rule option is provided by the

preprocessor:

sd_pattern

This rule option specifies what type of PII a rule should detect.

Syntax

sd_pattern:<count>, <pattern>;

count = 1 - 255

pattern = any string

Option Explanations

count

This dictates how many times a PII pattern must be matched for an alert to be generated. The count is

tracked across all packets in a session.

pattern

This is where the pattern of the PII gets specified. There are a few built-in patterns to choose from:

credit card

The ”credit card” pattern matches 15- and 16-digit credit card numbers. These numbers may

have spaces, dashes, or nothing in between groups. This covers Visa, Mastercard, Discover, and

American Express. Credit card numbers matched this way have their check digits verified using

the Luhn algorithm.

us social

This pattern matches against 9-digit U.S. Social Security numbers. The SSNs are expected to

have dashes between the Area, Group, and Serial sections.

SSNs have no check digits, but the preprocessor will check matches against the list of currently

allocated group numbers.

us social nodashes

This pattern matches U.S. Social Security numbers without dashes separating the Area, Group,

and Serial sections.

email

This pattern matches against email addresses.

If the pattern specified is not one of the above built-in patterns, then it is the definition of a custom PII

pattern. Custom PII types are defined using a limited regex-style syntax. The following special characters

and escape sequences are supported:

113

\d matches any digit

\D matches any non-digit

\l matches any letter

\L matches any non-letter

\w matches any alphanumeric character

\W matches any non-alphanumeric character

{num} used to repeat a character or escape sequence ”num” times. example:

”{. 3}” matches 3 digits.

? makes the previous character or escape sequence optional. example: ”

?” matches an optional space. This behaves in a greedy manner.

\\ matches a backslash

\{, \} matches { and }
\? matches a question mark.

Other characters in the pattern will be matched literally.

△!
NOTE

Unlike PCRE, \w in this rule option does NOT match underscores.

Examples

sd_pattern: 2,us_social;

Alerts when 2 social security numbers (with dashes) appear in a session.

sd_pattern: 5,(\d{3})\d{3}-\d{4};

Alerts on 5 U.S. phone numbers, following the format (123)456-7890

Whole rule example:

alert tcp $HOME_NET $HIGH_PORTS -> $EXTERNAL_NET $SMTP_PORTS \

(msg:"Credit Card numbers sent over email"; gid:138; sid:1000; rev:1; \

sd_pattern:4,credit_card; metadata:service smtp;)

Caveats

sd pattern is not compatible with other rule options. Trying to use other rule options with sd pattern

will result in an error message.

Rules using sd pattern must use GID 138.

2.2.18 Normalizer

When operating Snort in inline mode, it is helpful to normalize packets to help minimize the chances of evasion.

To enable the normalizer, use the following when configuring Snort:

./configure --enable-normalizer

The normalize preprocessor is activated via the conf as outlined below. There are also many new preprocessor and

decoder rules to alert on or drop packets with ”abnormal” encodings.

Note that in the following, fields are cleared only if they are non-zero. Also, normalizations will only be enabled if

the selected DAQ supports packet replacement and is operating in inline mode.

If a policy is configured for inline test or passive mode, any normalization statements in the policy config are

ignored.

114

IP4 Normalizations

IP4 normalizations are enabled with:

preprocessor normalize_ip4: [df], [rf], [tos], [trim]

Base normalizations enabled with ”preprocessor normalize ip4” include:

• TTL normalization if enabled (explained below).

• Clear the differentiated services field (formerly TOS).

• NOP all options octets.

Optional normalizations include:

• df don’t fragment: clear this bit on incoming packets.

• rf reserved flag: clear this bit on incoming packets.

• tos type of service (differentiated services): clear this byte.

• trim truncate packets with excess payload to the datagram length specified in the IP header + the layer 2 header

(e.g. ethernet), but don’t truncate below minimum frame length. This is automatically disabled if the DAQ can’t

inject packets.

IP6 Normalizations

IP6 normalizations are enabled with:

preprocessor normalize_ip6

Base normalizations enabled with ”preprocessor normalize ip6” include:

• Hop limit normalization if enabled (explained below).

• NOP all options octets in hop-by-hop and destination options extension headers.

ICMP4/6 Normalizations

ICMP4 and ICMP6 normalizations are enabled with:

preprocessor normalize_icmp4

preprocessor normalize_icmp6

Base normalizations enabled with the above include:

• Clear the code field in echo requests and replies.

115

TCP Normalizations

TCP normalizations are enabled with:

preprocessor normalize_tcp: \

[block], [rsv], [pad], \

[req_urg], [req_pay], [req_urp], \

[ips], [urp], [trim], \

[trim_syn], [trim_rst], \

[trim_win], [trim_mss], \

[ecn <ecn_type>], \

[opts [allow <allowed_opt>+]]

<ecn_type> ::= stream | packet

<allowed_opt> ::= \

sack | echo | partial_order | conn_count | alt_checksum | md5 | <num>

<sack> ::= { 4, 5 }

<echo> ::= { 6, 7 }

<partial_order> ::= { 9, 10 }

<conn_count> ::= { 11, 12, 13 }

<alt_checksum> ::= { 14, 15 }

<md5> ::= { 19 }

<num> ::= (3..255)

Normalizations include:

• block allow packet drops during TCP normalization.

• rsv clear the reserved bits in the TCP header.

• pad clear any option padding bytes.

• req urg clear the urgent pointer if the urgent flag is not set.

• req pay clear the urgent pointer and the urgent flag if there is no payload.

• req urp clear the urgent flag if the urgent pointer is not set.

• ips ensure consistency in retransmitted data (also forces reassembly policy to ”first”). Any segments that can’t

be properly reassembled will be dropped.

• trim syn remove data on SYN.

• trim rst remove any data from RST packet.

• trim win trim data to window.

• trim mss trim data to MSS.

• trim enable all of the above trim options.

• ecn packet

clear ECN flags on a per packet basis (regardless of negotiation).

• ecn stream

clear ECN flags if usage wasn’t negotiated. Should also enable require 3whs.

116

• opts

NOP all option bytes other than maximum segment size, window scaling, timestamp, and any explicitly allowed

with the allow keyword. You can allow options to pass by name or number.

• opts

if timestamp is present but invalid, or valid but not negotiated, NOP the timestamp octets.

• opts

if timestamp was negotiated but not present, block the packet.

• opts

clear TS ECR if ACK flag is not set.

• opts

MSS and window scale options are NOP’d if SYN flag is not set.

TTL Normalization

TTL normalization pertains to both IP4 TTL (time-to-live) and IP6 (hop limit) and is only performed if both the

relevant base normalization is enabled (as described above) and the minimum and new TTL values are configured, as

follows:

config min_ttl: <min_ttl>

config new_ttl: <new_ttl>

<min_ttl> ::= (1..255)

<new_ttl> ::= (<min_ttl>+1..255)

If new ttl > min ttl, then if a packet is received with a TTL < min ttl, the TTL will be set to new ttl.

Note that this configuration item was deprecated in 2.8.6:

preprocessor stream5_tcp: min_ttl <#>

By default min ttl = 1 (TTL normalization is disabled). When TTL normalization is turned on the new ttl is set to

5 by default.

2.2.19 SIP Preprocessor

Session Initiation Protocol (SIP) is an application-layer control (signaling) protocol for creating, modifying, and ter-

minating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribu-

tion, and multimedia conferences. SIP Preprocessor provides ways to tackle Common Vulnerabilities and Exposures

(CVEs) related with SIP found over the past few years. It also makes detecting new attacks easier.

Dependency Requirements

For proper functioning of the preprocessor:

• Stream session tracking must be enabled, i.e. stream5. Both TCP and UDP must be enabled in stream5. The

preprocessor requires a session tracker to keep its data. In addition, Stream API is able to provide correct support

for ignoring audio/video data channel.

• IP defragmentation should be enabled, i.e. the frag3 preprocessor should be enabled and configured.

117

Configuration

The preprocessor configuration name is sip.

preprocessor sip

Option syntax

Option Argument Required Default

disabled NONE NO OFF

max sessions <max sessions> NO max sessions 10000

max dialogs <max dialogs> NO max dialogs 4

ports <ports> NO ports { 5060 5061 }
methods <methods> NO methods { invite cancel ack bye

register options }
max uri len <max uri len> NO max uri len 256

max call id len <max call id len> NO max call id len 256

max requestName len <max requestName len> NO max requestName len 20

max from len <max from len> NO max from len 256

max to len <max to len> NO max to len 256

max via len <max via len> NO max via len 1024

max contact len <max contact len> NO max contact len 256

max content len <max content len> NO max content len 1024

ignore call channel NONE NO OFF

max_sessions = 1024-4194303

max_dialogs = 1-4194303

methods = "invite"|"cancel"|"ack"|"bye"|"register"| "options"\

|"refer" |"subscribe"|"update"|"join"|"info"|"message"\

|"notify"|"prack"

max_uri_len = 0-65535

max_call_id_len = 0-65535

max_requestName_len = 0-65535

max_from_len = 0-65535

max_to_len = 0-65535

max_via_len = 0-65535

max_contact_len = 0-65535

max_content_len = 0-65535

Option explanations

disabled

SIP dynamic preprocessor can be enabled/disabled through configuration. By default this value is turned

off. When the preprocessor is disabled, only the max sessions option is applied when specified with the

configuration.

max sessions

This specifies the maximum number of sessions that can be allocated. Those sessions are stream sessions,

so they are bounded by maximum number of stream sessions. Default is 10000.

max dialogs

This specifies the maximum number of dialogs within one stream session. If exceeded, the oldest dialog

will be dropped. Default is 4.

ports

This specifies on what ports to check for SIP messages. Typically, this will include 5060, 5061.

118

Syntax

ports { <port> [<port>< ... >] }

Examples

ports { 5060 5061 }

Note: there are spaces before and after ‘{’ and ‘}’.

methods

This specifies on what methods to check for SIP messages: (1) invite, (2) cancel, (3) ack, (4) bye, (5)

register, (6) options, (7) refer, (8) subscribe, (9) update (10) join (11) info (12) message (13) notify (14)

prack. Note: those 14 methods are up to date list (Feb. 2011). New methods can be added to the list. Up

to 32 methods supported.

Syntax

methods { <method-list> }

method-list = method|method method-list

methods = "invite"|"cancel"|"ack"|"bye"|"register"| "options"\

|"refer"|"subscribe"|"update"|"join"|"info"|"message"\

|"notify"|"prack"

Examples

methods { invite cancel ack bye register options }

methods { invite cancel ack bye register options information }

Note: there are spaces before and after ‘{’ and ‘}’.

max uri len

This specifies the maximum Request URI field size. If the Request URI field is greater than this size, an

alert is generated. Default is set to 256. The allowed range for this option is 0 - 65535. “0” means never

alert.

max call id len

This specifies the maximum Call-ID field size. If the Call-ID field is greater than this size, an alert is

generated. Default is set to 256. The allowed range for this option is 0 - 65535. “0” means never alert.

max requestName len

This specifies the maximum request name size that is part of the CSeq ID. If the request name is greater

than this size, an alert is generated. Default is set to 20. The allowed range for this option is 0 - 65535. “0”

means never alert.

max from len

This specifies the maximum From field size. If the From field is greater than this size, an alert is generated.

Default is set to 256. The allowed range for this option is 0 - 65535. “0” means never alert.

max to len

This specifies the maximum To field size. If the To field is greater than this size, an alert is generated.

Default is set to 256. The allowed range for this option is 0 - 65535. “0” means never alert.

max via len

This specifies the maximum Via field size. If the Via field is greater than this size, an alert is generated.

Default is set to 1024. The allowed range for this option is 0 - 65535. “0” means never alert.

max contact len

This specifies the maximum Contact field size. If the Contact field is greater than this size, an alert is

generated. Default is set to 256. The allowed range for this option is 0 - 65535. “0” means never alert.

119

max content len

This specifies the maximum content length of the message body. If the content length is greater than this

number, an alert is generated. Default is set to 1024. The allowed range for this option is 0 - 65535. “0”

means never alert.

ignore call channel

This enables the support for ignoring audio/video data channel (through Stream API). By default, this is

disabled.

Option examples

max_sessions 30000

disabled

ports { 5060 5061 }

methods { invite cancel ack bye register options }

methods { invite cancel ack bye register options information }

max_uri_len 1024

max_call_id_len 1024

max_requestName_len 10

max_from_len 1024

max_to_len 1024

max_via_len 1024

max_contact_len 1024

max_content_len 1024

max_content_len

ignore_call_channel

Configuration examples

preprocessor sip

preprocessor sip: max_sessions 500000

preprocessor sip: max_contact_len 512, max_sessions 300000, methods { invite \

cancel ack bye register options } , ignore_call_channel

preprocessor sip: ports { 5060 49848 36780 10270 }, max_call_id_len 200, \

max_from_len 100, max_to_len 200, max_via_len 1000, \

max_requestName_len 50, max_uri_len 100, ignore_call_channel,\

max_content_len 1000

preprocessor sip: disabled

preprocessor sip: ignore_call_channel

Default configuration

preprocessor sip

Events

The preprocessor uses GID 140 to register events.

SID Description

1 If the memory cap is reached and the preprocessor is configured to alert, this alert will be created.

2 Request URI is required. When Request URI is empty, this alert will be created.

3 The Request URI is larger than the defined length in configuration.

4 When Call-ID is empty, this alert will be created.

5 The Call-ID is larger than the defined length in configuration.

6 The sequence e number value MUST be expressible as a 32-bit unsigned integer and MUST be

less than 231.

7 The request name in the CSeq is larger than the defined length in configuration.

8 From field is empty.

9 From field is larger than the defined length in configuration.

10 To field is empty.

120

11 To field is larger than the defined length in configuration.

12 Via filed is empty.

13 Via filed is larger than the defined length in configuration.

14 Contact is empty, but it is required non-empty for the message.

15 The Contact is larger than the defined length in configuration.

16 The content length is larger than the defined length in configuration or is negative.

17 There are multiple requests in a single packet. Old SIP protocol supports multiple sip messages

within one packet.

18 There are inconsistencies between Content-Length in SIP header and actual body data.

19 Request name is invalid in response.

20 Authenticated invite message received, but no challenge from server received. This is the case of

InviteReplay billing attack.

21 Authenticated invite message received, but session information has been changed. This is dif-

ferent from re-INVITE, where the dialog has been established. and authenticated. This is can

prevent FakeBusy billing attack.

22 Response status code is not a 3 digit number.

23 Content type header field is required if the message body is not empty.

24 SIP version other than 2.0, 1.0, and 1.1 is invalid

25 Mismatch in Method of request and the CSEQ header

26 The method is unknown

27 The number of dialogs in the stream session exceeds the maximal value.

Rule Options

New rule options are supported by enabling the sip preprocessor:

sip_method

sip_stat_code

sip_header

sip_body

Overload modifiers to existing pcre rule options:

H: Match SIP request or SIP response header, Similar to sip header.

P: Match SIP request or SIP response body, Similar to sip body.

sip method

The sip method keyword is used to check for specific SIP request methods. The list of methods is: invite,

cancel, ack, bye, register, options, refer, subscribe, update, join, info, message, notify, prack. More than one

method can be specified, via a comma separated list, and are OR’ed together. It will be applied in fast pattern

match if available. If the method used in this rule is not listed in the preprocessor configuration, it will be added

to the preprocessor configuration for the associated policy.

Syntax

sip_method:<method-list>;

method-list = method|method, method-list

method = ["!"] "invite"|"cancel"|"ack"|"bye"|"register"| "options"\

|"refer"|"subscribe"|"update"|"join"|"info"|"message"\

|"notify"|"prack"

Note: if "!" is used, only one method is allowed in sip_method.

Examples

121

sip_method:invite, cancel

sip_method:!invite

Note: If a user wants to use "and", they can use something like this:

sip_method:!invite; sip_method:!bye

sip stat code

The sip stat code is used to check the SIP response status code. This option matches if any one of the state

codes specified matches the status codes of the SIP response.

Syntax

sip_stat_code:<code _list> ;

code_list = state_code|state_code, code_list

code = "100-999"|"1-9"

Note: 1,2,3,4,5,6... mean to check for ”1xx”, ”2xx”, ’3xx’, ’4xx’, ’5xx’, ’6xx’... responses.

Examples

sip_stat_code:200

sip_stat_code: 2

sip_stat_code: 200, 180

sip header

The sip header keyword restricts the search to the extracted Header fields of a SIP message request or a re-

sponse. This works similar to file data.

Syntax

sip_header;

Examples

alert udp any any -> any 5060 (sip_header; content:"CSeq";)

sip body

The sip body keyword places the cursor at the beginning of the Body fields of a SIP message. This works

similar to file data and dce stub data. The message body includes channel information using SDP protocol

(Session Description Protocol).

Syntax

sip_body;

Examples

alert udp any any -> any 5060 (sip_body; content:"C=IN 0.0.0.0"; within 100;)

pcre

SIP overloads two options for pcre:

– H: Match SIP header for request or response , Similar to sip header.

– P: Match SIP body for request or response , Similar to sip body.

Examples

alert udp any any -> any 5060 (pcre:"/INVITE/H"; sid:1000000;)

alert udp any any -> any 5060 (pcre:"/m=/P"; sid:2000000;)

122

2.2.20 Reputation Preprocessor

Reputation preprocessor provides basic IP blacklist/whitelist capabilities, to block/drop/pass traffic from IP addresses

listed. In the past, we use standard Snort rules to implement Reputation-based IP blocking. This preprocessor will

address the performance issue and make the IP reputation management easier. This preprocessor runs before other

preprocessors.

Configuration

The preprocessor configuration name is reputation.

preprocessor reputation

Option syntax

Option Argument Required Default

memcap <memcap> NO memcap 500

scan local NONE NO OFF

blacklist <list file name> NO NONE

whitelist <list file name> NO NONE

priority [blacklist whitelist] NO priority whitelist

nested ip [inner outer both] NO nested ip inner

white [unblack trust] NO white unblack

memcap = 1-4095 Mbytes

Option explanations

memcap

Maximum total memory supported. It can be set up to 4095 Mbytes.

scan local

Enable to inspect local address defined in RFC 1918:

10.0.0.0 - 10.255.255.255 (10/8 prefix)

172.16.0.0 - 172.31.255.255 (172.16/12 prefix)

192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

blacklist/whitelist

The IP lists are loaded from external files. It supports relative paths for inclusion and $variables for path.

Multiple blacklists or whitelists are supported.

Note: if the same IP is redefined later, it will overwrite the previous one. In other words, IP lists always

favors the last file or entry processed.

priority

Specify either blacklist or whitelist has higher priority when source/destination is on blacklist while des-

tination/source is on whitelist. By default, whitelist has higher priority. In other words, the packet will be

passed when either source or destination is whitelisted.

Note: this only defines priority when there is a decision conflict, during run-time. During initialization

time, if the same IP address is defined in whitelist and blacklist, whoever the last one defined will be the

final one. Priority does not work on this case.

123

nested ip

Specify which IP address to be used when there is IP encapsulation.

white

Specify the meaning of whitelist. When white means unblack, it unblacks IPs that are in blacklists; when

white means trust, the packet gets bypassed, without further detection by snort. You can only specify either

unblack or trust.

Note: when white means unblack, whitelist always has higher priority than blacklist.

Configuration examples

preprocessor reputation:\

blacklist /etc/snort/default.blacklist, \

whitelist /etc/snort/default.whitelist

preprocessor reputation: \

nested_ip both, \

blacklist /etc/snort/default.blacklist, \

whitelist /etc/snort/default.whitelist

preprocessor reputation: \

memcap 4095, scan_local, nested_ip both, \

priority whitelist, \

blacklist /etc/snort/default.blacklist, \

whitelist /etc/snort/default.whitelist,

white trust

$REP_BLACK_FILE1 = ../dshield.list

$REP_BLACK_FILE2 = ../snort.org.list

preprocessor reputation: \

blacklist $REP_BLACK_FILE1,\

blacklist $REP_BLACK_FILE2

IP List File Format

Syntax

The IP list file has 1 entry per line. The entry can be either IP entry or comment.

IP Entry

CIDR notation <comments> line break.
Example:

172.16.42.32/32

172.33.42.32/16

Comment

The comment start with #

<comments>
Example

This is a full line comment

172.33.42.32/16 # This is a in-line comment

IP List File Example

This is a full line comment

172.16.42.32/32 # This is an inline comment, line with single CIDR block

172.33.42.32/16

Use case

A user wants to protect his/her network from unwanted/unknown IPs, only allowing some trusted IPs. Here is

the configuration:

124

preprocessor reputation: \

blacklist /etc/snort/default.blacklist

whitelist /etc/snort/default.whitelist

In file "default.blacklist"

These two entries will match all ipv4 addresses

1.0.0.0/1

128.0.0.0/1

In file "default.whitelist"

68.177.102.22 # sourcefire.com

74.125.93.104 # google.com

Events

Reputation preprocessor uses GID 136 to register events.

SID Description

1 Packet is blacklisted.

2 Packet is whitelisted.

3 Packet is inspected.

Shared memory support

In order to minimize memory consumption when multiple Snort instances are running concurrently, we intro-

duce the support of shared memory. After configured, all the snort instances share the same IP tables in shared

memory.

System requirement

This feature is supported only in Linux.

Build configuration

A new option, --enable-shared-rep is introduced to ./configure command. This option enables the

support for shared memory.

Configuration

shared mem

If the build supports shared memory, this configuration will enable shared memory. If this option

isn’t set, standard memory is used. This option must specify a path or directory where IP lists will

be loaded in shared memory. One snort instance will create and maintain the shared IP lists. We use

instance ID 1, specified in the snort -G option to be the master snort. All the other snort instances are

clients (readers).

Syntax

shared_mem: path

Examples

shared_mem /user/reputation/iplists

shared refresh

This option changes the period of checking new shared memory segment, in the unit of second. By

default, the refresh rate is 60 seconds.

Syntax

shared_refresh <period>

period = "1 - 4294967295"

125

Examples

shared_refresh 60

Steps to configure shared memory

– When building Snort, add option --enable-shared-rep to ./configure

For example:

./configure --enable-gre --enable-sourcefire --enable-flexresp3

--enable-pthread --enable-linux-smp-stats

--enable-targetbased --enable-shared-rep --enable-control-socket

– Put your IP list file into a directory, where snort has full access.

For example:

/user/reputation/iplists

In order to separate whitelist with blacklist, you need to specify whitelist with .wlf extension and blacklist

with .blf extension.

– In snort config file, specify shared memory support with the path to IP files.

For example:

shared_mem /user/reputation/iplists

If you want to change the period of checking new IP lists, add refresh period.

For example:

shared_refresh 300

– Start shared memory master(writer) with -G 0 option. Note: only one master should be enabled.

– Start shared memory clients (readers) with -G 1 or other IDs. Note: for one ID, only one snort instance

should be enabled.

– You will see the IP lists got loaded and shared across snort instances!

Reload IP lists using control socket

– Run snort using command line with option --cs-dir <path> or configure snort with:

config cs_dir:<path>

– (Optional) you can create a version file named “IPRVersion.dat” in the IP list directory. This file helps

managing reloading IP lists, by specifying a version. When the version isn’t changed, IP lists will not be

reloaded if they are already in shared memory. The version number should be a 32 bit number.

For example:

VERSION=1

– In the <snort root>/src/tools/control directory, you will find snort control command if built

with --enable-control-socket option.

– Type the following command to reload IP lists. Before typing this command, make sure to update version

file if you are using version file. The <path> is the same path in first step.

<snort root>/src/tools/control/snort_control <path> 1361

126

Using manifest file to manage loading (optional)

Using manifest file, you can control the file loading sequence, action taken, and support zone based detec-

tion. You can create a manifest file named “zone.info” in the IP list directory.

When Snort is signaled to load new lists, a manifest file is read first to determine which zones the IPs in

each list are applicable to and what action to take per list (Block, White, Monitor).

Files listed in manifest are loaded from top to bottom. You should put files that have higher priority first.

In manifest file, you can put up to 255 files. Without manifest file, files will be loaded in alphabet order.

Here’s the format of the manifest file. Each line of the file has the following format:

<filename>, <list id>,<action>[, <zone>]+

<list id> ::= 32 bit integer

<action> ::= "monitor"|"block"|"white"

<zone> ::= [0-1051]

Using manifest file, you can specify a new action called “monitor”, which indicates a packet needs to be

inspected, but does not disable detection. This is different from “block” action, which disables further

detection. This new action helps users evaluate their IP lists before applying it.

An example manifest file:

#ipreputation manifest file

white.wlf, 111 ,white,

black1.blf, 1112, black, 3, 12

black2.blf, 1113, black, 3, 12

monitor.blf,2222, monitor, 0, 2, 8

2.2.21 GTP Decoder and Preprocessor

GTP (GPRS Tunneling Protocol) is used in core communication networks to establish a channel between GSNs (GPRS

Serving Node). GTP decoding preprocessor provides ways to tackle intrusion attempts to those networks through GTP.

It also makes detecting new attacks easier.

Two components are developed: GTP decoder and GTP preprocessor.

• GTP decoder extracts payload inside GTP PDU;

• GTP preprocessor inspects all the signaling messages and provide keywords for further inspection

When the decoder is enabled and configured, the decoder strips the GTP headers and parses the underlying IP/TCP/UDP

encapsulated packets. Therefore all rules and detection work as if there was no GTP header.

Example:

Most GTP packets look like this

IP -> UDP -> GTP -> IP -> TCP -> HTTP

If you had a standard HTTP rule:

alert tcp any any -> any $HTTP_PORTS (msg:"Test HTTP"; flow:to_server,established;

content:"SOMETHINGEVIL"; http_uri; sid:X; rev:Y;)

it would alert on the inner HTTP data that is encapsulated in GTP without any changes to the rule other than

enabling and configuring the GTP decoder.

127

Dependency Requirements

For proper functioning of the preprocessor:

• Stream session tracking must be enabled, i.e. stream5. UDP must be enabled in stream5. The preprocessor

requires a session tracker to keep its data.

• IP defragmentation should be enabled, i.e. the frag3 preprocessor should be enabled and configured.

GTP Data Channel Decoder Configuration

GTP decoder extracts payload from GTP PDU. The following configuration sets GTP decoding:

config enable_gtp

By default, GTP decoder uses port number 2152 (GTPv1) and 3386 (GTPv0). If users want to change those values,

they can use portvar GTP PORTS:

portvar GTP_PORTS [2152,3386]

GTP Control Channel Preprocessor Configuration

Different from GTP decoder, GTP preprocessor examines all signaling messages. The preprocessor configuration

name is gtp.

preprocessor gtp

Option syntax

Option Argument Required Default

ports <ports> NO ports { 2123 3386 }

Option explanations

ports

This specifies on what ports to check for GTP messages. Typically, this will include 2123, 3386.

Syntax

ports { <port> [<port>< ... >] }

Examples

ports { 2123 3386 2152 }

Note: there are spaces before and after ‘{’ and ‘}’.

Default configuration

preprocessor gtp

GTP Decoder Events

SID Description

297 Two or more GTP encapsulation layers present

298 GTP header length is invalid

128

GTP Preprocessor Events

SID Description

1 Message length is invalid.

2 Information element length is invalid.

3 Information elements are out of order.

Rule Options

New rule options are supported by enabling the gtp preprocessor:

gtp_type

gtp_info

gtp_version

gtp type

The gtp type keyword is used to check for specific GTP types. User can input message type value, an integer

in [0, 255], or a string defined in the Table below. More than one type can be specified, via a comma separated

list, and are OR’ed together. If the type used in a rule is not listed in the preprocessor configuration, an error

will be thrown.

A message type can have different type value in different GTP versions. For example, sgsn context request

has message type value 50 in GTPv0 and GTPv1, but 130 in GTPv2. gtp type will match to a different value

depending on the version number in the packet. In this example, evaluating a GTPv0 or GTPv1 packet will

check whether the message type value is 50; evaluating a GTPv2 packet will check whether the message type

value is 130. When a message type is not defined in a version, any packet in that version will always return “No

match”.

If an integer is used to specify message type, every GTP packet is evaluated, no matter what version the packet

is. If the message type matches the value in packet, it will return “Match”.

Syntax

gtp_type:<type-list>;

type-list = type|type, type-list

type = "0-255"|

| "echo_request" | "echo_response" ...

Examples

gtp_type:10, 11, echo_request;

GTP message types

Type GTPv0 GTPv1 GTPv2

0 N/A N/A N/A

1 echo request echo request echo request

2 echo response echo response echo response

3 version not supported version not supported version not supported

4 node alive request node alive request N/A

5 node alive response node alive response N/A

6 redirection request redirection request N/A

7 redirection response redirection response N/A

16 create pdp context request create pdp context request N/A

17 create pdp context response create pdp context response N/A

18 update pdp context request update pdp context request N/A

19 update pdp context response update pdp context response N/A

129

20 delete pdp context request delete pdp context request N/A

21 delete pdp context response delete pdp context response N/A

22 create aa pdp context request init pdp context activation request N/A

23 create aa pdp context response init pdp context activation response N/A

24 delete aa pdp context request N/A N/A

25 delete aa pdp context response N/A N/A

26 error indication error indication N/A

27 pdu notification request pdu notification request N/A

28 pdu notification response pdu notification response N/A

29 pdu notification reject request pdu notification reject request N/A

30 pdu notification reject response pdu notification reject response N/A

31 N/A supported ext header notification N/A

32 send routing info request send routing info request create session request

33 send routing info response send routing info response create session response

34 failure report request failure report request modify bearer request

35 failure report response failure report response modify bearer response

36 note ms present request note ms present request delete session request

37 note ms present response note ms present response delete session response

38 N/A N/A change notification request

39 N/A N/A change notification response

48 identification request identification request N/A

49 identification response identification response N/A

50 sgsn context request sgsn context request N/A

51 sgsn context response sgsn context response N/A

52 sgsn context ack sgsn context ack N/A

53 N/A forward relocation request N/A

54 N/A forward relocation response N/A

55 N/A forward relocation complete N/A

56 N/A relocation cancel request N/A

57 N/A relocation cancel response N/A

58 N/A forward srns contex N/A

59 N/A forward relocation complete ack N/A

60 N/A forward srns contex ack N/A

64 N/A N/A modify bearer command

65 N/A N/A modify bearer failure indication

66 N/A N/A delete bearer command

67 N/A N/A delete bearer failure indication

68 N/A N/A bearer resource command

69 N/A N/A bearer resource failure indication

70 N/A ran info relay downlink failure indication

71 N/A N/A trace session activation

72 N/A N/A trace session deactivation

73 N/A N/A stop paging indication

95 N/A N/A create bearer request

96 N/A mbms notification request create bearer response

97 N/A mbms notification response update bearer request

98 N/A mbms notification reject request update bearer response

99 N/A mbms notification reject response delete bearer request

100 N/A create mbms context request delete bearer response

101 N/A create mbms context response delete pdn request

102 N/A update mbms context request delete pdn response

103 N/A update mbms context response N/A

104 N/A delete mbms context request N/A

105 N/A delete mbms context response N/A

112 N/A mbms register request N/A

113 N/A mbms register response N/A

114 N/A mbms deregister request N/A

115 N/A mbms deregister response N/A

116 N/A mbms session start request N/A

130

117 N/A mbms session start response N/A

118 N/A mbms session stop request N/A

119 N/A mbms session stop response N/A

120 N/A mbms session update request N/A

121 N/A mbms session update response N/A

128 N/A ms info change request identification request

129 N/A ms info change response identification response

130 N/A N/A sgsn context request

131 N/A N/A sgsn context response

132 N/A N/A sgsn context ack

133 N/A N/A forward relocation request

134 N/A N/A forward relocation response

135 N/A N/A forward relocation complete

136 N/A N/A forward relocation complete ack

137 N/A N/A forward access

138 N/A N/A forward access ack

139 N/A N/A relocation cancel request

140 N/A N/A relocation cancel response

141 N/A N/A configuration transfer tunnel

149 N/A N/A detach

150 N/A N/A detach ack

151 N/A N/A cs paging

152 N/A N/A ran info relay

153 N/A N/A alert mme

154 N/A N/A alert mme ack

155 N/A N/A ue activity

156 N/A N/A ue activity ack

160 N/A N/A create forward tunnel request

161 N/A N/A create forward tunnel response

162 N/A N/A suspend

163 N/A N/A suspend ack

164 N/A N/A resume

165 N/A N/A resume ack

166 N/A N/A create indirect forward tunnel request

167 N/A N/A create indirect forward tunnel response

168 N/A N/A delete indirect forward tunnel request

169 N/A N/A delete indirect forward tunnel response

170 N/A N/A release access bearer request

171 N/A N/A release access bearer response

176 N/A N/A downlink data

177 N/A N/A downlink data ack

178 N/A N/A N/A

179 N/A N/A pgw restart

199 N/A N/A pgw restart ack

200 N/A N/A update pdn request

201 N/A N/A update pdn response

211 N/A N/A modify access bearer request

212 N/A N/A modify access bearer response

231 N/A N/A mbms session start request

232 N/A N/A mbms session start response

233 N/A N/A mbms session update request

234 N/A N/A mbms session update response

235 N/A N/A mbms session stop request

236 N/A N/A mbms session stop response

240 data record transfer request data record transfer request N/A

241 data record transfer response data record transfer response N/A

254 N/A end marker N/A

255 pdu pdu N/A

131

gtp info

The gtp info keyword is used to check for specific GTP information element. This keyword restricts the

search to the information element field. User can input information element value, an integer in [0,255], or a

string defined in the Table below. If the information element used in this rule is not listed in the preprocessor

configuration, an error will be thrown.

When there are several information elements with the same type in the message, this keyword restricts the

search to the total consecutive buffer. Because the standard requires same types group together, this feature will

be available for all valid messages. In the case of “out of order information elements”, this keyword restricts the

search to the last buffer.

Similar to message type, same information element might have different information element value in different

GTP versions. For example, cause has value 1 in GTPv0 and GTPv1, but 2 in GTPv2. gtp info will match to

a different value depending on the version number in the packet. When an information element is not defined in

a version, any packet in that version will always return “No match”.

If an integer is used to specify information element type, every GTP packet is evaluated, no matter what version

the packet is. If the message type matches the value in packet, it will return “Match”.

Syntax

gtp_info:<ie>;

ie = "0-255"|

"rai" | "tmsi"...

Examples

gtp_info: 16;

gtp_info: tmsi

GTP information elements

Type GTPv0 GTPv1 GTPv2

0 N/A N/A N/A

1 cause cause imsi

2 imsi imsi cause

3 rai rai recovery

4 tlli tlli N/A

5 p tmsi p tmsi N/A

6 qos N/A N/A

7 N/A N/A N/A

8 recording required recording required N/A

9 authentication authentication N/A

10 N/A N/A N/A

11 map cause map cause N/A

12 p tmsi sig p tmsi sig N/A

13 ms validated ms validated N/A

14 recovery recovery N/A

15 selection mode selection mode N/A

16 flow label data 1 teid 1 N/A

17 flow label signalling teid control N/A

18 flow label data 2 teid 2 N/A

19 ms unreachable teardown ind N/A

20 N/A nsapi N/A

21 N/A ranap N/A

22 N/A rab context N/A

23 N/A radio priority sms N/A

24 N/A radio priority N/A

25 N/A packet flow id N/A

26 N/A charging char N/A

132

27 N/A trace ref N/A

28 N/A trace type N/A

29 N/A ms unreachable N/A

71 N/A N/A apn

72 N/A N/A ambr

73 N/A N/A ebi

74 N/A N/A ip addr

75 N/A N/A mei

76 N/A N/A msisdn

77 N/A N/A indication

78 N/A N/A pco

79 N/A N/A paa

80 N/A N/A bearer qos

81 N/A N/A flow qos

82 N/A N/A rat type

83 N/A N/A serving network

84 N/A N/A bearer tft

85 N/A N/A tad

86 N/A N/A uli

87 N/A N/A f teid

88 N/A N/A tmsi

89 N/A N/A cn id

90 N/A N/A s103pdf

91 N/A N/A s1udf

92 N/A N/A delay value

93 N/A N/A bearer context

94 N/A N/A charging id

95 N/A N/A charging char

96 N/A N/A trace info

97 N/A N/A bearer flag

98 N/A N/A N/A

99 N/A N/A pdn type

100 N/A N/A pti

101 N/A N/A drx parameter

102 N/A N/A N/A

103 N/A N/A gsm key tri

104 N/A N/A umts key cipher quin

105 N/A N/A gsm key cipher quin

106 N/A N/A umts key quin

107 N/A N/A eps quad

108 N/A N/A umts key quad quin

109 N/A N/A pdn connection

110 N/A N/A pdn number

111 N/A N/A p tmsi

112 N/A N/A p tmsi sig

113 N/A N/A hop counter

114 N/A N/A ue time zone

115 N/A N/A trace ref

116 N/A N/A complete request msg

117 N/A N/A guti

118 N/A N/A f container

119 N/A N/A f cause

120 N/A N/A plmn id

121 N/A N/A target id

122 N/A N/A N/A

123 N/A N/A packet flow id

124 N/A N/A rab contex

125 N/A N/A src rnc pdcp

126 N/A N/A udp src port

133

127 charge id charge id apn restriction

128 end user address end user address selection mode

129 mm context mm context src id

130 pdp context pdp context N/A

131 apn apn change report action

132 protocol config protocol config fq csid

133 gsn gsn channel

134 msisdn msisdn emlpp pri

135 N/A qos node type

136 N/A authentication qu fqdn

137 N/A tft ti

138 N/A target id mbms session duration

139 N/A utran trans mbms service area

140 N/A rab setup mbms session id

141 N/A ext header mbms flow id

142 N/A trigger id mbms ip multicast

143 N/A omc id mbms distribution ack

144 N/A ran trans rfsp index

145 N/A pdp context pri uci

146 N/A addi rab setup csg info

147 N/A sgsn number csg id

148 N/A common flag cmi

149 N/A apn restriction service indicator

150 N/A radio priority lcs detach type

151 N/A rat type ldn

152 N/A user loc info node feature

153 N/A ms time zone mbms time to transfer

154 N/A imei sv throttling

155 N/A camel arp

156 N/A mbms ue context epc timer

157 N/A tmp mobile group id signalling priority indication

158 N/A rim routing addr tmgi

159 N/A mbms config mm srvcc

160 N/A mbms service area flags srvcc

161 N/A src rnc pdcp mmbr

162 N/A addi trace info N/A

163 N/A hop counter N/A

164 N/A plmn id N/A

165 N/A mbms session id N/A

166 N/A mbms 2g3g indicator N/A

167 N/A enhanced nsapi N/A

168 N/A mbms session duration N/A

169 N/A addi mbms trace info N/A

170 N/A mbms session repetition num N/A

171 N/A mbms time to data N/A

173 N/A bss N/A

174 N/A cell id N/A

175 N/A pdu num N/A

176 N/A N/A N/A

177 N/A mbms bearer capab N/A

178 N/A rim routing disc N/A

179 N/A list pfc N/A

180 N/A ps xid N/A

181 N/A ms info change report N/A

182 N/A direct tunnel flags N/A

183 N/A correlation id N/A

184 N/A bearer control mode N/A

185 N/A mbms flow id N/A

186 N/A mbms ip multicast N/A

134

187 N/A mbms distribution ack N/A

188 N/A reliable inter rat handover N/A

189 N/A rfsp index N/A

190 N/A fqdn N/A

191 N/A evolved allocation1 N/A

192 N/A evolved allocation2 N/A

193 N/A extended flags N/A

194 N/A uci N/A

195 N/A csg info N/A

196 N/A csg id N/A

197 N/A cmi N/A

198 N/A apn ambr N/A

199 N/A ue network N/A

200 N/A ue ambr N/A

201 N/A apn ambr nsapi N/A

202 N/A ggsn backoff timer N/A

203 N/A signalling priority indication N/A

204 N/A signalling priority indication nsapi N/A

205 N/A high bitrate N/A

206 N/A max mbr N/A

250 N/A N/A N/A

N/A N/A N/A

251 charging gateway addr charging gateway addr N/A

255 private extension private extension private extension

gtp version

The gtp version keyword is used to check for specific GTP version.

Because different GTP version defines different message types and information elements, this keyword should

combine with gtp type and gtp info.

Syntax

gtp_version:<version>;

version = "0, 1, 2’

Examples

gtp_version: 1;

2.2.22 Modbus Preprocessor

The Modbus preprocessor is a Snort module that decodes the Modbus protocol. It also provides rule options to access

certain protocol fields. This allows a user to write rules for Modbus packets without decoding the protocol with a

series of ”content” and ”byte test” options.

Modbus is a protocol used in SCADA networks. If your network does not contain any Modbus-enabled devices, we

recommend leaving this preprocessor turned off.

Dependency Requirements

For proper functioning of the preprocessor:

• Stream session tracking must be enabled, i.e. stream5. TCP must be enabled in stream5. The preprocessor

requires a session tracker to keep its data.

• Protocol Aware Flushing (PAF) must be enabled.

• IP defragmentation should be enabled, i.e. the frag3 preprocessor should be enabled and configured.

135

Preprocessor Configuration

To get started, the Modbus preprocessor must be enabled. The preprocessor name is modbus.

preprocessor modbus

Option syntax

Option Argument Required Default

ports <ports> NO ports { 502 }

Option explanations

ports

This specifies on what ports to check for Modbus messages. Typically, this will include 502.

Syntax

ports { <port> [<port>< ... >] }

Examples

ports { 1237 3945 5067 }

Note: there are spaces before and after ‘{’ and ‘}’.

Default configuration

preprocessor modbus

Rule Options

The Modbus preprocessor adds 3 new rule options. These rule options match on various pieces of the Modbus headers:

modbus_func

modbus_unit

modbus_data

The preprocessor must be enabled for these rule option to work.

modbus func

This option matches against the Function Code inside of a Modbus header. The code may be a number (in

decimal format), or a string from the list provided below.

Syntax

modbus_func:<code>

code = 0-255 |

"read_coils" |

"read_discrete_inputs" |

"read_holding_registers" |

"read_input_registers" |

"write_single_coil" |

"write_single_register" |

"read_exception_status" |

"diagnostics" |

"get_comm_event_counter" |

"get_comm_event_log" |

"write_multiple_coils" |

136

"write_multiple_registers" |

"report_slave_id" |

"read_file_record" |

"write_file_record" |

"mask_write_register" |

"read_write_multiple_registers" |

"read_fifo_queue" |

"encapsulated_interface_transport"

Examples

modbus_func:1;

modbus_func:write_multiple_coils;

modbus unit

This option matches against the Unit ID field in a Modbus header.

Syntax

modbus_unit:<unit>

unit = 0-255

Examples

modbus_unit:1;

modbus data

This rule option sets the cursor at the beginning of the Data field in a Modbus request/response.

Syntax

modbus_data;

Examples

modbus_data; content:"badstuff";

Preprocessor Events

The Modbus preprocessor uses GID 144 for its preprocessor events.

SID Description

1 The length in the Modbus header does not match the length needed

by the Modbus function code.

Each Modbus function has an expected format for requests and responses.

If the length of the message does not match the expected format, this

alert is generated.

2 Modbus protocol ID is non-zero.

The protocol ID field is used for multiplexing other protocols with

Modbus. Since the preprocessor cannot handle these other protocols,

this alert is generated instead.

3 Reserved Modbus function code in use.

137

2.2.23 DNP3 Preprocessor

The DNP3 preprocessor is a Snort module that decodes the DNP3 protocol. It also provides rule options to access

certain protocol fields. This allows a user to write rules for DNP3 packets without decoding the protocol with a series

of ”content” and ”byte test” options.

DNP3 is a protocol used in SCADA networks. If your network does not contain any DNP3-enabled devices, we

recommend leaving this preprocessor turned off.

Dependency Requirements

For proper functioning of the preprocessor:

• Stream session tracking must be enabled, i.e. stream5. TCP or UDP must be enabled in stream5. The prepro-

cessor requires a session tracker to keep its data.

• Protocol Aware Flushing (PAF) must be enabled.

• IP defragmentation should be enabled, i.e. the frag3 preprocessor should be enabled and configured.

Preprocessor Configuration

To get started, the DNP3 preprocessor must be enabled. The preprocessor name is dnp3.

preprocessor dnp3

Option syntax

Option Argument Required Default

ports <ports> NO ports { 20000 }
memcap <number NO memcap 262144

check crc NONE NO OFF

disabled NONE NO OFF

Option explanations

ports

This specifies on what ports to check for DNP3 messages. Typically, this will include 20000.

Syntax

ports { <port> [<port>< ... >] }

Examples

ports { 1237 3945 5067 }

Note: there are spaces before and after ‘{’ and ‘}’.

memcap

This sets a maximum to the amount of memory allocated to the DNP3 preprocessor for session-tracking

purposes. The argument is given in bytes. Each session requires about 4 KB to track, and the default is 256

kB. This gives the preprocessor the ability to track 63 DNP3 sessions simultaneously. Setting the memcap

below 4144 bytes will cause a fatal error. When multiple configs are used, the memcap in the non-default

configs will be overwritten by the memcap in the default config. If the default config isn’t intended to

inspect DNP3 traffic, use the ”disabled” keyword.

check crc

138

This option makes the preprocessor validate the checksums contained in DNP3 Link-Layer Frames. Frames

with invalid checksums will be ignored. If the corresponding preprocessor rule is enabled, invalid check-

sums will generate alerts. The corresponding rule is GID 145, SID 1.

disabled

This option is used for loading the preprocessor without inspecting any DNP3 traffic. The disabled

keyword is only useful when the DNP3 preprocessor is turned on in a separate policy.

Default configuration

preprocessor dnp3

Rule Options

The DNP3 preprocessor adds 4 new rule options. These rule options match on various pieces of the DNP3 headers:

dnp3_func

dnp3_obj

dnp3_ind

dnp3_data

The preprocessor must be enabled for these rule option to work.

dnp3 func

This option matches against the Function Code inside of a DNP3 Application-Layer request/response header.

The code may be a number (in decimal format), or a string from the list provided below.

Syntax

dnp3_func:<code>

code = 0-255 |

"confirm" |

"read" |

"write" |

"select" |

"operate" |

"direct_operate" |

"direct_operate_nr" |

"immed_freeze" |

"immed_freeze_nr" |

"freeze_clear" |

"freeze_clear_nr" |

"freeze_at_time" |

"freeze_at_time_nr" |

"cold_restart" |

"warm_restart" |

"initialize_data" |

"initialize_appl" |

"start_appl" |

"stop_appl" |

"save_config" |

"enable_unsolicited" |

"disable_unsolicited" |

"assign_class" |

"delay_measure" |

"record_current_time" |

"open_file" |

"close_file" |

"delete_file" |

"get_file_info" |

"authenticate_file" |

139

"abort_file" |

"activate_config" |

"authenticate_req" |

"authenticate_err" |

"response" |

"unsolicited_response" |

"authenticate_resp"

Examples

dnp3_func:1;

dnp3_func:delete_file;

dnp3 ind

This option matches on the Internal Indicators flags present in a DNP3 Application Response Header. Much

like the TCP flags rule option, providing multiple flags in one option will cause the rule to fire if ANY one of the

flags is set. To alert on a combination of flags, use multiple rule options.

Syntax

dnp3_ind:<flag>{,<flag>...]

flag = "all_stations"

"class_1_events"

"class_2_events"

"class_3_events"

"need_time"

"local_control"

"defice_trouble"

"device_restart"

"no_func_code_support"

"object_unknown"

"parameter_error"

"event_buffer_overflow"

"already_executing"

"config_corrupt"

"reserved_2"

"reserved_1"

Examples

Alert on reserved_1 OR reserved_2

dnp3_ind:reserved_1,reserved_2;

Alert on class_1 AND class_2 AND class_3 events

dnp3_ind:class_1_events; dnp3_ind:class_2_events; dnp3_ind:class_3_events;

dnp3 obj

This option matches on DNP3 object headers present in a request or response.

Syntax

dnp3_obj:<group>,<var>

group = 0 - 255

var = 0 - 255

Examples

Alert on DNP3 "Date and Time" object

dnp3_obj:50,1;

140

dnp3 data

As Snort processes DNP3 packets, the DNP3 preprocessor collects Link-Layer Frames and reassembles them

back into Application-Layer Fragments. This rule option sets the cursor to the beginning of an Application-

Layer Fragment, so that other rule options can work on the reassembled data.

With the dnp3 data rule option, you can write rules based on the data within Fragments without splitting up the

data and adding CRCs every 16 bytes.

Syntax

dnp3_data;

Examples

dnp3_data; content:"badstuff_longer_than_16chars";

Preprocessor Events

The DNP3 preprocessor uses GID 145 for its preprocessor events.

SID Description

1 A Link-Layer Frame contained an invalid CRC.

(Enable check crc in the preprocessor config to get this alert.)

2 A DNP3 Link-Layer Frame was dropped, due to an invalid length.

3 A Transport-Layer Segment was dropped during reassembly.

This happens when segments have invalid sequence numbers.

4 The DNP3 Reassembly buffer was cleared before a complete fragment could

be reassembled.

This happens when a segment carrying the ”FIR” flag appears after some

other segments have been queued.

5 A DNP3 Link-Layer Frame is larger than 260 bytes.

6 A DNP3 Link-Layer Frame uses an address that is reserved.

7 A DNP3 request or response uses a reserved function code.

2.2.24 AppId Preprocessor

With increasingly complex networks and growing network traffic, network administrators require application aware-

ness in managing networks. An administrator may allow only applications that are business relevant, low bandwidth

and/or deal with certain subject matter.

AppId preprocessor adds application level view to manage networks. It does this by adding the following features

• Network control: The preprocessor provides simplified single point application awareness by making a set of

application identifiers (AppId) available to Snort Rule writers.

• Network usage awareness: the preprocessor outputs statistics to show network bandwidth used by each applica-

tion seen on network. Administrators can monitor bandwidth usage and may decide to block applications that

are wasteful.

• Custom applications: The preprocessor enables administrators to create their own application detectors to detect

new applications. The detectors are written in Lua and interface with Snort using a well-defined C-Lua API.

Dependency Requirements

For proper functioning of the preprocessor:

141

• Stream session tracking must be enabled, i.e. stream5. TCP or UDP must be enabled in stream5. The prepro-

cessor requires a session tracker to keep its data.

• Protocol Aware Flushing (PAF) must be enabled.

• IP defragmentation should be enabled, i.e. the frag3 preprocessor should be enabled and configured.

• HTTP preprocessor must be enabled and configured. The processor does not require any AppId specific con-

figuration. The preprocessor provides parsed HTTP headers for application determination. Without HTTP

preprocessor, AppId preprocessor will identify only non-HTTP applications.

• LuaJIT version 2.0.2 must be installed on host where snort is being compiled and run. Newer versions of LuaJIT

are not tested for compatibility.

Preprocessor Configuration

AppId dynamic preprocessor is enabled by default(from snort-2.9.12). The preprocessor can be disabled during build

time by including the following option in ./configure:

–disable-open-appid

The configuration name is ”appid”:

The preprocessor name is appid.

preprocessor appid

Option syntax

Option Argument Required Default

app detector dir <directory> NO app detector dir {
/usr/local/etc/appid }

app stats filename <filename> NO NULL

app stats period <time in seconds> NO 300 seconds

app stats rollover size <disk size in bytes> NO 20 MB

app stats rollover time <time in seconds> NO 1 day

memcap <memory limit bytes> NO 256 MB

debug <"yes"> NO disabled

dump ports No NO disabled

Option explanations

app detector dir

specifies base path where Cisco provided detectors and application configuration files are installed by ODP

(Open Detector Package) package. The package contains Lua detectors and some application metadata.

Customer written detectors are stored in subdirectory ”custom” under the same base path.

Syntax

app_detector_dir <directory name>

Examples

app_detector_dir /usr/local/cisco/apps

app stats filename

name of file. If this configuration is missing, application stats are disabled.

Syntax

app_stats_filename <filename>

142

Examples

app_stats_filename appStats.log

app stats period

bucket size in seconds. Default 5 minutes.

Syntax

app_stats_period <time in seconds>

Examples

app_stats_period 15

app stats rollover size

file size which will cause file rollover. Default 20 MB.

Syntax

app_stats_rollover_size <file size in bytes>

Examples

app_stats_rollover_size 2000000

app stats rollover time >

time since file creation which will cause rollover. Default 1 day.

Syntax

app_stats_rollover_time <time in seconds>

Examples

app_stats_rollover_time 3600

memcap >

upper bound for memory used by AppId internal structures. Default 32MB.

Syntax

memcap <memory in bytes>

Examples

memcap 100000000

dump ports >

prints port only detectors and information on active detectors. Used for troubleshooting.

Syntax

dump_ports <"yes"|"no">

Examples

dump_ports "yes"

debug

Used in some old detectors for debugging.

Syntax

debug

Examples

debug

Default configuration

preprocessor appid

143

Rule Options

The AppId preprocessor adds 1 new rule option as follows:

appid

The preprocessor must be enabled for this rule option to work.

appid

The rule option allows users to customize rules to specific application in a simple manner. The option can take

up to 10 application names separated by spaces, tabs, or commas. Application names in rules are the names you

will see in last column in appMapping.data file. A rule is considered a match if one of the appId in a rule match

an appId in a session.

For client side packets, payloadAppId in a session is matched with all AppIds in a rule. Thereafter miscAppId,

clientAppId and serviceAppId are matched. Since Alert Events contain one AppId, only the first match is

reported. If rule without appId option matches, then the most specific appId (in order of payload, misc, client,

server) is reported.

The same logic is followed for server side packets with one exception. Order of matching is changed to make

serviceAppId higher then clientAppId.

Syntax

appid:<list of application names>

Examples

appid: http;

appid: ftp, ftp-data;

appid: cnn.com, zappos;

Application Rule Events

A new event type is defined for logging application name in Snort Alerts in unified2 format only. These events contain

only one application name. The Events can be enabled for unified2 output using ’appid event types keyword.

For example, the following configuration will log alert in my.alert file with application name.

output alert_unified2: filename my.alert, appid_event_types

u2spewfoo, u2openappid, u2streamer tools can be used to print alerts in new format. Each event will display additional

application name at the end of the event.

Examples

#> u2spewfoo outputs the following event format

(Event)

sensor id: 0 event id: 6 event second: 1292962302 event microsecond: 227323

sig id: 18763 gen id: 1 revision: 4 classification: 0

priority: 0 ip source: 98.27.88.56 ip destination: 10.4.10.79

src port: 80 dest port: 54767 protocol: 6 impact_flag: 0 blocked: 0

mpls label: 0 vland id: 0 policy id: 0 appid: zappos

Application Usage Statistics

AppId preprocessor prints application network usage periodically in snort log directory in unified2 format. File name,
time interval for statistic and file rollover are controlled by appId preprocessor configuration. u2spewfoo, u2openappid,
u2streamer tools can be used to print contents of these files. An example output from u2openappid tools is as follows:

statTime="1292962290",appName="firefox",txBytes="9395",rxBytes="77021"

statTime="1292962290",appName="google_analytic",txBytes="2024",rxBytes="928"

statTime="1292962290",appName="http",txBytes="28954",rxBytes="238000"

statTime="1292962290",appName="zappos",txBytes="26930",rxBytes="237072"

144

Open Detector Package (ODP) Installation

Application detectors from Snort team will be delivered in a separate package called Open Detector Package. ODP is

a package that contains the following artifacts:

1. Application detectors in Lua language.

2. Port detectors, which are port only application detectors, in meta-data in YAML format.

3. appMapping.data file containing application metadata. This file should not be modified. The first column

contains application identifier and second column contains application name. Other columns contain internal

information.

4. Lua library files DetectorCommon.lua, flowTrackerModule.lua and hostServiceTrackerModule.lua

User can install ODP package in any directory of its choosing and configure this directory in app detector dir option in

appId preprocessor configuration. Installing ODP will not modify any subdirectory named custom, where user-created

detectors are located.

When installed, ODP will create following sub-directories:

odp/port //Cisco port-only detectors

odp/lua //Cisco Lua detectors

odp/libs //Cisco Lua modules

User Created Application Detectors

Users can create new applications by coding detectors in Lua language. Users can also copy Snort team provided

detectors into custom subdirectory and customize the detector. A document will be posted on Snort Website with

details on API usage.

Users must organize their Lua detectors and libraries by creating the following directory structure, under ODP instal-
lation directory.

custom/port //port-only detectors

custom/lua //Lua detectors

custom/libs //Lua modules

2.3 Decoder and Preprocessor Rules

Decoder and preprocessor rules allow one to enable and disable decoder and preprocessor events on a rule by rule

basis. They also allow one to specify the rule type or action of a decoder or preprocessor event on a rule by rule basis.

Decoder config options will still determine whether or not to generate decoder events. For example, if config

disable decode alerts is in snort.conf, decoder events will not be generated regardless of whether or not there

are corresponding rules for the event. Also note that if the decoder is configured to enable drops, e.g. config

enable decode drops, these options will take precedence over the event type of the rule. A packet will be dropped

if either a decoder config drop option is in snort.conf or the decoder or preprocessor rule type is drop. Of course,

the drop cases only apply if Snort is running inline. See doc/README.decode for config options that control decoder

events.

2.3.1 Configuring

The decoder and preprocessor rules are located in the preproc rules/ directory in the top level source tree, and

have the names decoder.rules and preprocessor.rules respectively. These files are updated as new decoder and

preprocessor events are added to Snort. The gen-msg.map under etc directory is also updated with new decoder and

preprocessor rules.

145

To enable these rules in snort.conf, define the path to where the rules are located and uncomment the include lines

in snort.conf that reference the rules files.

var PREPROC_RULE_PATH /path/to/preproc_rules

...

include $PREPROC_RULE_PATH/preprocessor.rules

include $PREPROC_RULE_PATH/decoder.rules

To disable any rule, just comment it with a # or remove the rule completely from the file (commenting is recom-

mended).

To change the rule type or action of a decoder/preprocessor rule, just replace alert with the desired rule type. Any

one of the following rule types can be used:

alert

log

pass

drop

sdrop

reject

For example one can change:

alert (msg: "DECODE_NOT_IPV4_DGRAM"; sid: 1; gid: 116; rev: 1; \

metadata: rule-type decode ; classtype:protocol-command-decode;)

to

drop (msg: "DECODE_NOT_IPV4_DGRAM"; sid: 1; gid: 116; rev: 1; \

metadata: rule-type decode ; classtype:protocol-command-decode;)

to drop (as well as alert on) packets where the Ethernet protocol is IPv4 but version field in IPv4 header has a value

other than 4.

See README.decode, README.gre and the various preprocessor READMEs for descriptions of the rules in decoder.rules

and preprocessor.rules.

The generator ids (gid) for different preprocessors and the decoder are as follows:

2.3.2 Reverting to original behavior

The following config option in snort.conf will make Snort revert to the old behavior:

config autogenerate_preprocessor_decoder_rules

Note that if you want to revert to the old behavior, you also have to remove the decoder and preprocessor rules and

any reference to them from snort.conf, otherwise they will be loaded. This option applies to rules not specified and

the default behavior is to alert.

2.4 Event Processing

Snort provides a variety of mechanisms to tune event processing to suit your needs:

146

Generator Id Module

105 Back Orifice preprocessor

106 RPC Decode preprocessor

112 Arpspoof preprocessor

116 Snort Decoder

119 HTTP Inspect preprocessor (Client)

120 HTTP Inspect preprocessor (Server)

122 Portscan preprocessor

123 Frag3 preprocessor

124 SMTP preprocessor

125 FTP (FTP) preprocessor

126 FTP (Telnet) preprocessor

127 ISAKMP preprocessor

128 SSH preprocessor

129 Stream preprocessor

131 DNS preprocessor

132 Skype preprocessor

133 DceRpc2 preprocessor

134 PPM preprocessor

136 Reputation preprocessor

137 SSL preprocessor

139 SDF preprocessor

140 SIP preprocessor

141 IMAP preprocessor

142 POP preprocessor

143 GTP preprocessor

• Detection Filters

You can use detection filters to specify a threshold that must be exceeded before a rule generates an event. This

is covered in section 3.7.7.

• Rate Filters

You can use rate filters to change a rule action when the number or rate of events indicates a possible attack.

• Event Filters

You can use event filters to reduce the number of logged events for noisy rules. This can be tuned to significantly

reduce false alarms.

• Event Suppression

You can completely suppress the logging of uninteresting events.

2.4.1 Rate Filtering

rate filter provides rate based attack prevention by allowing users to configure a new action to take for a specified

time when a given rate is exceeded. Multiple rate filters can be defined on the same rule, in which case they are

evaluated in the order they appear in the configuration file, and the first applicable action is taken.

Format

Rate filters are used as standalone configurations (outside of a rule) and have the following format:

rate_filter \

gen_id <gid>, sig_id <sid>, \

147

track <by_src|by_dst|by_rule>, \

count <c>, seconds <s>, \

new_action alert|drop|pass|log|sdrop|reject, \

timeout <seconds> \

[, apply_to <ip-list>]

The options are described in the table below - all are required except apply to, which is optional.

Option Description

track by src | by dst |

by rule

rate is tracked either by source IP address, destination IP address, or by

rule. This means the match statistics are maintained for each unique

source IP address, for each unique destination IP address, or they are

aggregated at rule level. For rules related to Stream sessions, source and

destination means client and server respectively. track by rule and

apply to may not be used together.

count c the maximum number of rule matches in s seconds before the rate filter

limit to is exceeded. c must be nonzero value.

seconds s the time period over which count is accrued. 0 seconds means count is

a total count instead of a specific rate. For example, rate filter may

be used to detect if the number of connections to a specific server exceed

a specific count. 0 seconds only applies to internal rules (gen id 135) and

other use will produce a fatal error by Snort.

new action alert | drop |

pass | log | sdrop | reject

new action replaces rule action for t seconds. drop, reject, and

sdrop can be used only when snort is used in inline mode. sdrop and

reject are conditionally compiled with GIDS.

timeout t revert to the original rule action after t seconds. If t is 0, then rule

action is never reverted back. An event filter may be used to manage

number of alerts after the rule action is enabled by rate filter.

apply to <ip-list> restrict the configuration to only to source or destination IP address (in-

dicated by track parameter) determined by <ip-list>. track by rule

and apply to may not be used together. Note that events are gener-

ated during the timeout period, even if the rate falls below the configured

limit.

Examples

Example 1 - allow a maximum of 100 connection attempts per second from any one IP address, and block further

connection attempts from that IP address for 10 seconds:

rate_filter \

gen_id 135, sig_id 1, \

track by_src, \

count 100, seconds 1, \

new_action drop, timeout 10

Example 2 - allow a maximum of 100 successful simultaneous connections from any one IP address, and block further

connections from that IP address for 10 seconds:

rate_filter \

gen_id 135, sig_id 2, \

track by_src, \

count 100, seconds 0, \

new_action drop, timeout 10

148

2.4.2 Event Filtering

Event filtering can be used to reduce the number of logged alerts for noisy rules by limiting the number of times a

particular event is logged during a specified time interval. This can be tuned to significantly reduce false alarms.

There are 3 types of event filters:

• limit

Alerts on the 1st m events during the time interval, then ignores events for the rest of the time interval.

• threshold

Alerts every m times we see this event during the time interval.

• both

Alerts once per time interval after seeing m occurrences of the event, then ignores any additional events during

the time interval.

Format

event_filter \

gen_id <gid>, sig_id <sid>, \

type <limit|threshold|both>, \

track <by_src|by_dst>, \

count <c>, seconds <s>

threshold \

gen_id <gid>, sig_id <sid>, \

type <limit|threshold|both>, \

track <by_src|by_dst>, \

count <c>, seconds <s>

threshold is an alias for event filter. Both formats are equivalent and support the options described below - all

are required. threshold is deprecated and will not be supported in future releases.

Option Description

gen id <gid> Specify the generator ID of an associated rule. gen id 0, sig id 0 can be used

to specify a ”global” threshold that applies to all rules.

sig id <sid> Specify the signature ID of an associated rule. sig id 0 specifies a ”global” filter

because it applies to all sig ids for the given gen id.

type limit|threshold|both type limit alerts on the 1st m events during the time interval, then ignores events

for the rest of the time interval. Type threshold alerts every m times we see

this event during the time interval. Type both alerts once per time interval after

seeing m occurrences of the event, then ignores any additional events during the

time interval.

track by src|by dst rate is tracked either by source IP address, or destination IP address. This means

count is maintained for each unique source IP addresses, or for each unique desti-

nation IP addresses. Ports or anything else are not tracked.

count c number of rule matching in s seconds that will cause event filter limit to be

exceeded. c must be nonzero value. A value of -1 disables the event filter and can

be used to override the global event filter.

seconds s time period over which count is accrued. s must be nonzero value.

149

△!
NOTE

Only one event filter may be defined for a given gen id, sig id. If more than one event filter is

applied to a specific gen id, sig id pair, Snort will terminate with an error while reading the configuration

information.

event filters with sig id 0 are considered ”global” because they apply to all rules with the given gen id. If

gen id is also 0, then the filter applies to all rules. (gen id 0, sig id != 0 is not allowed). Standard filtering tests

are applied first, if they do not block an event from being logged, the global filtering test is applied. Thresholds in a

rule (deprecated) will override a global event filter. Global event filters do not override what’s in a signature

or a more specific stand-alone event filter.

△!
NOTE

event filters can be used to suppress excessive rate filter alerts, however, the first new action event

of the timeout period is never suppressed. Such events indicate a change of state that are significant to the

user monitoring the network.

Examples

Limit logging to 1 event per 60 seconds:

event_filter \

gen_id 1, sig_id 1851, \

type limit, track by_src, \

count 1, seconds 60

Limit logging to every 3rd event:

event_filter \

gen_id 1, sig_id 1852, \

type threshold, track by_src, \

count 3, seconds 60

Limit logging to just 1 event per 60 seconds, but only if we exceed 30 events in 60 seconds:

event_filter \

gen_id 1, sig_id 1853, \

type both, track by_src, \

count 30, seconds 60

Limit to logging 1 event per 60 seconds per IP triggering each rule (rule gen id is 1):

event_filter \

gen_id 1, sig_id 0, \

type limit, track by_src, \

count 1, seconds 60

Limit to logging 1 event per 60 seconds per IP, triggering each rule for each event generator:

event_filter \

gen_id 0, sig_id 0, \

type limit, track by_src, \

count 1, seconds 60

150

Events in Snort are generated in the usual way, event filters are handled as part of the output system. Read gen-

msg.map for details on gen ids.

Users can also configure a memcap for threshold with a “config:” option:

config event_filter: memcap <bytes>

this is deprecated:

config threshold: memcap <bytes>

2.4.3 Event Suppression

Event suppression stops specified events from firing without removing the rule from the rule base. Suppression uses

an IP list to select specific networks and users for suppression. Suppression tests are performed prior to either standard

or global thresholding tests.

Suppression are standalone configurations that reference generators, SIDs, and IP addresses via an IP list . This allows

a rule to be completely suppressed, or suppressed when the causative traffic is going to or coming from a specific IP

or group of IP addresses.

You may apply multiple suppressions to a non-zero SID. You may also combine one event filter and several

suppressions to the same non-zero SID.

Format

The suppress configuration has two forms:

suppress \

gen_id <gid>, sig_id <sid>

suppress \

gen_id <gid>, sig_id <sid>, \

track <by_src|by_dst>, ip <ip-list>

Option Description

gen id <gid> Specify the generator ID of an associated rule. gen id 0, sig id 0 can be used

to specify a ”global” threshold that applies to all rules.

sig id <sid> Specify the signature ID of an associated rule. sig id 0 specifies a ”global” filter

because it applies to all sig ids for the given gen id.

track by src|by dst Suppress by source IP address or destination IP address. This is optional, but if

present, ip must be provided as well.

ip <list> Restrict the suppression to only source or destination IP addresses (indicated by

track parameter) determined by <list>. If track is provided, ip must be provided

as well.

Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:

Suppress this event from this IP:

151

suppress gen_id 1, sig_id 1852, track by_src, ip 10.1.1.54

Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by_dst, ip 10.1.1.0/24

2.4.4 Event Logging

Snort supports logging multiple events per packet/stream that are prioritized with different insertion methods, such as

max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:

config event_queue: [max_queue [size]] [log [size]] [order_events [TYPE]]

Event Queue Configuration Options

There are three configuration options to the configuration parameter ’event queue’.

1. max queue

This determines the maximum size of the event queue. For example, if the event queue has a max size of 8, only

8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given packet or stream. You can’t log more than the max event

number that was specified.

The default value is 3.

3. order events

This argument determines the way that the incoming events are ordered. We currently have two different meth-

ods:

• priority - The highest priority (1 being the highest) events are ordered first.

• content length - Rules are ordered before decode or preprocessor alerts, and rules that have a longer

content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rule types such as pass, alert, log, etc.

The default value is content length.

Event Queue Configuration Examples

The default configuration:

config event_queue: max_queue 8 log 3 order_events content_length

Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events content_length

Use the default event queue values, but change event order:

config event_queue: order_events priority

Use the default event queue values but change the number of logged events:

config event_queue: log 2

152

2.4.5 Event Trace

Snort supports logging additional information to a file about the events it is generating relative to specific blocks of

data that are matching the rule. The blocks of data logged include information about the event, the GID, SID, and

other data related to the event itself, plus packet data including sizes, timestamps, raw, normalized, and decompressed

buffers extracted from the packet that may have been used in evaluating the rule. The amount of packet data written is

limited with each entry. This is useful in debugging rules.

The config option event trace to snort.conf provides this control.

The general configuration for event tracing is as follows:

config event_trace: [file <filename>] [max_data <int>]

The are two configuration options for event trace.

1. file

This sets the file name into which the trace data is written, within Snort’s log directory (see -l command line

option).

The default is event trace.txt.

2. max data

This specifies the maximum number of bytes from each buffer of data to write into the file.

The default is 64 bytes and valid values range from 1 to 65535 bytes.

Event Trace Examples

The default configuration:

config event_trace: file event_trace.txt max_data 64

Use the default file, but change the amount of data logged:

config event_trace: max_data 128

Change the file name to which event traces are logged:

config event_trace: file snort_event_trace.out

2.5 Performance Profiling

Snort can provide statistics on rule and preprocessor performance. Each require only a simple config option to

snort.conf and Snort will print statistics on the worst (or all) performers on exit. When a file name is provided in

profile rules or profile preprocs, the statistics will be saved in these files. If append is not specified, a new

file will be created each time Snort is run. The filenames will have timestamps appended to them. These files will be

found in the logging directory.

To use this feature, you must build snort with the --enable-perfprofiling option to the configure script.

153

2.5.1 Rule Profiling

Format

config profile_rules: \

print [all | <num>], \

sort <sort_option> \

[,filename <filename> [append]]

• <num> is the number of rules to print

• <sort option> is one of:

checks

matches

nomatches

avg ticks

avg ticks per match

avg ticks per nomatch

total ticks

• <filename> is the output filename

• [append] dictates that the output will go to the same file each time (optional)

Examples

• Print all rules, sort by avg ticks (default configuration if option is turned on)

config profile rules

• Print all rules, sort by avg ticks, and append to file rules stats.txt

config profile rules: filename rules stats.txt append

• Print the top 10 rules, based on highest average time

config profile rules: print 10, sort avg ticks

• Print all rules, sorted by number of checks

config profile rules: print all, sort checks

• Print top 100 rules, based on total time

config profile rules: print 100, sort total ticks

• Print with default options, save results to performance.txt each time

config profile rules: filename performance.txt append

• Print top 20 rules, save results to perf.txt with timestamp in filename

config profile rules: print 20, filename perf.txt

154

Rule Profile Statistics (worst 4 rules)

==

Num SID GID Rev Checks Matches Alerts Ticks Avg/Check Avg/Match Avg/Nonmatch

=== === === === ====== ======= ====== ===== ========= ========= ============

1 2389 1 12 1 1 1 385698 385698.0 385698.0 0.0

2 2178 1 17 2 0 0 107822 53911.0 0.0 53911.0

3 2179 1 8 2 0 0 92458 46229.0 0.0 46229.0

4 1734 1 37 2 0 0 90054 45027.0 0.0 45027.0

Figure 2.1: Rule Profiling Example Output

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile rules: print 4, sort total ticks

The columns represent:

• Number (rank)

• Sig ID

• Generator ID

• Checks (number of times rule was evaluated after fast pattern match within portgroup or any->any rules)

• Matches (number of times ALL rule options matched, will be high for rules that have no options)

• Alerts (number of alerts generated from this rule)

• CPU Ticks

• Avg Ticks per Check

• Avg Ticks per Match

• Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Ticks) column is important because that is the total time spent

evaluating a given rule. But, if that rule is causing alerts, it makes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likely contains PCRE. High Checks and low Avg/Check is

usually an any->any rule with few rule options and no content. Quick to check, the few options may or may not match.

We are looking at moving some of these into code, especially those with low SIDs.

By default, this information will be printed to the console when Snort exits. You can use the ”filename” option in

snort.conf to specify a file where this will be written. If ”append” is not specified, a new file will be created each time

Snort is run. The filenames will have timestamps appended to them. These files will be found in the logging directory.

2.5.2 Preprocessor Profiling

Format

config profile_preprocs: \

print [all | <num>], \

sort <sort_option> \

[, filename <filename> [append]]

• <num> is the number of preprocessors to print

155

• <sort option> is one of:

checks

avg ticks

total ticks

• <filename> is the output filename

• [append] dictates that the output will go to the same file each time (optional)

Examples

• Print all preprocessors, sort by avg ticks (default configuration if option is turned on)

config profile preprocs

• Print all preprocessors, sort by avg ticks, and append to file preprocs stats.txt

config profile preprocs: filename preprocs stats.txt append

• Print the top 10 preprocessors, based on highest average time

config profile preprocs: print 10, sort avg ticks

• Print all preprocessors, sorted by number of checks

config profile preprocs: print all, sort checks

Output

Snort will print a table much like the following at exit.

Configuration line used to print the above table:

config profile_preprocs: \

print 10, sort total_ticks

The columns represent:

• Number (rank) - The number is indented for each layer. Layer 1 preprocessors are listed under their respective

caller (and sorted similarly).

• Preprocessor Name

• Layer - When printing a specific number of preprocessors all subtasks info for a particular preprocessor is

printed for each layer 0 preprocessor stat.

• Checks (number of times preprocessor decided to look at a packet, ports matched, app layer header was correct,

etc)

• Exits (number of corresponding exits – just to verify code is instrumented correctly, should ALWAYS match

Checks, unless an exception was trapped)

• CPU Ticks

• Avg Ticks per Check

• Percent of caller - For non layer 0 preprocessors, i.e. subroutines within preprocessors, this identifies the percent

of the caller’s ticks that is spent for this subtask.

Because of task swapping, non-instrumented code, and other factors, the Pct of Caller field will not add up to 100%

of the caller’s time. It does give a reasonable indication of how much relative time is spent within each subtask.

By default, this information will be printed to the console when Snort exits. You can use the ”filename” option in

snort.conf to specify a file where this will be written. If ”append” is not specified, a new file will be created each time

Snort is run. The filenames will have timestamps appended to them. These files will be found in the logging directory.

156

Preprocessor Profile Statistics (worst 10)

==

Num Preprocessor Layer Checks Exits Microsecs Avg/Check Pct of Caller Pct of Total

=== ============ ===== ====== ===== ========= ========= ============= ============

1 detect 0 338181 338181 9054573 26.77 64.62 64.62

1 rule eval 1 256978 256978 2570596 10.00 28.39 18.35

1 rule tree eval 2 399860 399860 2520629 6.30 98.06 17.99

1 pcre 3 51328 51328 505636 9.85 20.06 3.61

2 byte_jump 3 6 6 7 1.30 0.00 0.00

3 content 3 1077588 1077588 1123373 1.04 44.57 8.02

4 uricontent 3 106498 106498 79685 0.75 3.16 0.57

5 byte_test 3 9951 9951 5709 0.57 0.23 0.04

6 isdataat 3 8486 8486 3192 0.38 0.13 0.02

7 flowbits 3 135739 135739 35365 0.26 1.40 0.25

8 flags 3 2 2 0 0.20 0.00 0.00

9 preproc_rule_options 3 15499 15499 1939 0.13 0.08 0.01

10 flow 3 394817 394817 36420 0.09 1.44 0.26

11 file_data 3 15957 15957 1264 0.08 0.05 0.01

12 ack 3 4 4 0 0.07 0.00 0.00

2 rtn eval 2 36928 36928 17500 0.47 0.68 0.12

2 mpse 1 646528 646528 5840244 9.03 64.50 41.68

2 s5 0 310080 310080 3270702 10.55 23.34 23.34

1 s5tcp 1 310080 310080 2993020 9.65 91.51 21.36

1 s5TcpState 2 304484 304484 2559085 8.40 85.50 18.26

1 s5TcpFlush 3 22148 22148 70681 3.19 2.76 0.50

1 s5TcpProcessRebuilt 4 22132 22132 2018748 91.21 2856.11 14.41

2 s5TcpBuildPacket 4 22132 22132 34965 1.58 49.47 0.25

2 s5TcpData 3 184186 184186 120794 0.66 4.72 0.86

1 s5TcpPktInsert 4 46249 46249 89299 1.93 73.93 0.64

2 s5TcpNewSess 2 5777 5777 37958 6.57 1.27 0.27

3 httpinspect 0 204751 204751 1814731 8.86 12.95 12.95

4 ssl 0 10780 10780 16283 1.51 0.12 0.12

5 decode 0 312638 312638 437860 1.40 3.12 3.12

6 DceRpcMain 0 155358 155358 186061 1.20 1.33 1.33

1 DceRpcSession 1 155358 155358 156193 1.01 83.95 1.11

7 backorifice 0 77 77 42 0.55 0.00 0.00

8 smtp 0 45197 45197 17126 0.38 0.12 0.12

9 ssh 0 26453 26453 7195 0.27 0.05 0.05

10 dns 0 28 28 5 0.18 0.00 0.00

total total 0 311202 311202 14011946 45.03 0.00 0.00

Figure 2.2: Preprocessor Profiling Example Output

157

2.5.3 Packet Performance Monitoring (PPM)

PPM provides thresholding mechanisms that can be used to provide a basic level of latency control for snort. It does

not provide a hard and fast latency guarantee but should in effect provide a good average latency control. Both rules

and packets can be checked for latency. The action taken upon detection of excessive latency is configurable. The

following sections describe configuration, sample output, and some implementation details worth noting.

To use PPM, you must build with the –enable-ppm or the –enable-sourcefire option to configure.

PPM is configured as follows:

Packet configuration:

config ppm: max-pkt-time <micro-secs>, \

fastpath-expensive-packets, \

pkt-log, \

debug-pkts

Rule configuration:

config ppm: max-rule-time <micro-secs>, \

threshold count, \

suspend-expensive-rules, \

suspend-timeout <seconds>, \

rule-log [log] [alert]

Packets and rules can be configured separately, as above, or together in just one config ppm statement. Packet and rule

monitoring is independent, so one or both or neither may be enabled.

Configuration

Packet Configuration Options

max-pkt-time <micro-secs>

• enables packet latency thresholding using ’micros-secs’ as the limit.

• default is 0 (packet latency thresholding disabled)

• reasonable starting defaults: 100/250/1000 for 1G/100M/5M nets

fastpath-expensive-packets

• enables stopping further inspection of a packet if the max time is exceeded

• default is off

pkt-log

• enables logging packet event if packet exceeds max-pkt-time

• default is no logging

• if no option is given for ’pkt-log’, ’pkt-log log’ is implied

• the log option enables output to syslog or console depending upon snort configuration

debug-pkts

• must build with the –enable-debug option to configure

158

• enables per packet timing stats to be printed after each packet

• default is off

Rule Configuration Options

max-rule-time <micro-secs>

• enables rule latency thresholding using ’micros-secs’ as the limit.

• default is 0 (rule latency thresholding disabled)

• reasonable starting defaults: 100/250/1000 for 1G/100M/5M nets

threshold <count>

• sets the number of cumulative rule time excesses before disabling a rule

• default is 5

suspend-expensive-rules

• enables suspending rule inspection if the max rule time is exceeded

• default is off

suspend-timeout <seconds>

• rule suspension time in seconds

• default is 60 seconds

• set to zero to permanently disable expensive rules

rule-log [log] [alert]

• enables event logging output for rules

• default is no logging

• one or both of the options ’log’ and ’alert’ must be used with ’rule-log’

• the log option enables output to syslog or console depending upon snort configuration

Examples

Example 1: The following enables packet tracking:

config ppm: max-pkt-time 100

The following enables rule tracking:

config ppm: max-rule-time 50, threshold 5

If fastpath-expensive-packets or suspend-expensive-rules is not used, then no action is taken other than to increment

the count of the number of packets that should be fastpath’d or the rules that should be suspended. A summary of this

information is printed out when snort exits.

Example 2:

The following suspends rules and aborts packet inspection. These rules were used to generate the sample output that

follows.

159

config ppm: \

max-pkt-time 50, fastpath-expensive-packets, \

pkt-log, debug-pkts

config ppm: \

max-rule-time 50, threshold 5, suspend-expensive-rules, \

suspend-timeout 300, rule-log log alert

Sample Snort Output

Sample Snort Startup Output

Packet Performance Monitor Config:

ticks per usec : 1600 ticks

max packet time : 50 usecs

packet action : fastpath-expensive-packets

packet logging : log

debug-pkts : disabled

Rule Performance Monitor Config:

ticks per usec : 1600 ticks

max rule time : 50 usecs

rule action : suspend-expensive-rules

rule threshold : 5

suspend timeout : 300 secs

rule logging : alert log

Sample Snort Run-time Output

...

PPM: Process-BeginPkt[61] caplen=60

PPM: Pkt[61] Used= 8.15385 usecs

PPM: Process-EndPkt[61]

PPM: Process-BeginPkt[62] caplen=342

PPM: Pkt[62] Used= 65.3659 usecs

PPM: Process-EndPkt[62]

PPM: Pkt-Event Pkt[63] used=56.0438 usecs, 0 rules, 1 nc-rules tested, packet fastpathed

(10.4.12.224:0 -> 10.4.14.108:54321).

PPM: Process-BeginPkt[63] caplen=60

PPM: Pkt[63] Used= 8.394 usecs

PPM: Process-EndPkt[63]

PPM: Process-BeginPkt[64] caplen=60

PPM: Pkt[64] Used= 8.21764 usecs

PPM: Process-EndPkt[64]

...

Sample Snort Exit Output

Packet Performance Summary:

max packet time : 50 usecs

packet events : 1

avg pkt time : 0.633125 usecs

160

Rule Performance Summary:

max rule time : 50 usecs

rule events : 0

avg nc-rule time : 0.2675 usecs

Implementation Details

• Enforcement of packet and rule processing times is done after processing each rule. Latency control is not

enforced after each preprocessor.

• This implementation is software based and does not use an interrupt driven timing mechanism and is therefore

subject to the granularity of the software based timing tests. Due to the granularity of the timing measurements

any individual packet may exceed the user specified packet or rule processing time limit. Therefore this imple-

mentation cannot implement a precise latency guarantee with strict timing guarantees. Hence the reason this is

considered a best effort approach.

• Since this implementation depends on hardware based high performance frequency counters, latency threshold-

ing is presently only available on Intel and PPC platforms.

• Time checks are made based on the total system time, not processor usage by Snort. This was a conscious design

decision because when a system is loaded, the latency for a packet is based on the total system time, not just the

processor time the Snort application receives. Therefore, it is recommended that you tune your thresholding to

operate optimally when your system is under load.

2.6 Output Modules

Output modules are new as of version 1.6. They allow Snort to be much more flexible in the formatting and presentation

of output to its users. The output modules are run when the alert or logging subsystems of Snort are called, after

the preprocessors and detection engine. The format of the directives in the config file is very similar to that of the

preprocessors.

Multiple output plugins may be specified in the Snort configuration file. When multiple plugins of the same type (log,

alert) are specified, they are stacked and called in sequence when an event occurs. As with the standard logging and

alerting systems, output plugins send their data to /var/log/snort by default or to a user directed directory (using the -l

command line switch).

Output modules are loaded at runtime by specifying the output keyword in the config file:

output <name>: <options>

output alert_syslog: log_auth log_alert

2.6.1 alert syslog

This module sends alerts to the syslog facility (much like the -s command line switch). This module also allows the

user to specify the logging facility and priority within the Snort config file, giving users greater flexibility in logging

alerts.

Available Keywords

Facilities

• log auth

• log authpriv

161

• log daemon

• log local0

• log local1

• log local2

• log local3

• log local4

• log local5

• log local6

• log local7

• log user

Priorities

• log emerg

• log alert

• log crit

• log err

• log warning

• log notice

• log info

• log debug

Options

• log cons

• log ndelay

• log perror

• log pid

Format

alert_syslog: \

<facility> <priority> <options>

△!
NOTE

As WIN32 does not run syslog servers locally by default, a hostname and port can be passed as options. The

default host is 127.0.0.1. The default port is 514.

output alert_syslog: \

[host=<hostname[:<port>],] \

<facility> <priority> <options>

162

Example

output alert_syslog: host=10.1.1.1:514, <facility> <priority> <options>

2.6.2 alert fast

This will print Snort alerts in a quick one-line format to a specified output file. It is a faster alerting method than full

alerts because it doesn’t need to print all of the packet headers to the output file and because it logs to only 1 file.

Format

output alert_fast: [<filename> ["packet"] [<limit>]]

<limit> ::= <number>[(’G’|’M’|K’)]

• filename: the name of the log file. The default name is <logdir>/alert. You may specify ”stdout” for terminal

output. The name may include an absolute or relative path.

• packet: this option will cause multiline entries with full packet headers to be logged. By default, only brief

single-line entries are logged.

• limit: an optional limit on file size which defaults to 128 MB. The minimum is 1 KB. See 2.6.9 for more

information.

Example

output alert_fast: alert.fast

2.6.3 alert full

This will print Snort alert messages with full packet headers. The alerts will be written in the default logging directory

(/var/log/snort) or in the logging directory specified at the command line.

Inside the logging directory, a directory will be created per IP. These files will be decoded packet dumps of the packets

that triggered the alerts. The creation of these files slows Snort down considerably. This output method is discouraged

for all but the lightest traffic situations.

Format

output alert_full: [<filename> [<limit>]]

<limit> ::= <number>[(’G’|’M’|K’)]

• filename: the name of the log file. The default name is <logdir>/alert. You may specify ”stdout” for terminal

output. The name may include an absolute or relative path.

• limit: an optional limit on file size which defaults to 128 MB. The minimum is 1 KB. See 2.6.9 for more

information.

Example

output alert_full: alert.full

163

2.6.4 alert unixsock

Sets up a UNIX domain socket and sends alert reports to it. External programs/processes can listen in on this socket

and receive Snort alert and packet data in real time.

Format

alert_unixsock

Example

output alert_unixsock

△!
NOTE

On FreeBSD, the default sysctl value for net.local.dgram.recvspace is too low for alert unixsock

datagrams and you will likely not receive any data. You can change this value after booting by running:

$ sudo sysctl net.local.dgram.recvspace=100000

To have this value set on each boot automatically, add the following to /etc/sysctl.conf:

net.local.dgram.recvspace=100000

Note that the value of 100000 may be slightly generous, but the value should be at least 65864.

2.6.5 log tcpdump

The log tcpdump module logs packets to a tcpdump-formatted file. This is useful for performing post-process analysis

on collected traffic with the vast number of tools that are available for examining tcpdump-formatted files.

Format

output log_tcpdump: [<filename> [<limit>]]

<limit> ::= <number>[(’G’|’M’|K’)]

• filename: the name of the log file. The default name is <logdir>/snort.log. The name may include an absolute

or relative path. A UNIX timestamp is appended to the filename.

• limit: an optional limit on file size which defaults to 128 MB. When a sequence of packets is to be logged, the

aggregate size is used to test the rollover condition. See 2.6.9 for more information.

Example

output log_tcpdump: snort.log

2.6.6 csv

The csv output plugin allows alert data to be written in a format easily importable to a database. The output fields and

their order may be customized.

164

Format

output alert_csv: [<filename> [<format> [<limit>]]]

<format> ::= "default"|<list>

<list> ::= <field>(,<field>)*

<field> ::= "dst"|"src"|"ttl" ...

<limit> ::= <number>[(’G’|’M’|K’)]

• filename: the name of the log file. The default name is <logdir>/alert.csv. You may specify ”stdout” for

terminal output. The name may include an absolute or relative path.

• format: The list of formatting options is below. If the formatting option is ”default”, the output is in the order

of the formatting options listed.

– timestamp

– sig generator

– sig id

– sig rev

– msg

– proto

– src

– srcport

– dst

– dstport

– ethsrc

– ethdst

– ethlen

– tcpflags

– tcpseq

– tcpack

– tcplen

– tcpwindow

– ttl

– tos

– id

– dgmlen

– iplen

– icmptype

– icmpcode

– icmpid

– icmpseq

• limit: an optional limit on file size which defaults to 128 MB. The minimum is 1 KB. See 2.6.9 for more

information.

Example

output alert_csv: /var/log/alert.csv default

output alert_csv: /var/log/alert.csv timestamp, msg

165

2.6.7 unified 2

Unified2 can work in one of three modes, packet logging, alert logging, or true unified logging. Packet logging includes

a capture of the entire packet and is specified with log unified2. Likewise, alert logging will only log events and is

specified with alert unified2. To include both logging styles in a single, unified file, simply specify unified2.

When MPLS support is turned on, MPLS labels can be included in unified2 events. Use option mpls event types to

enable this. If option mpls event types is not used, then MPLS labels will be not be included in unified2 events.

△!
NOTE

By default, unified 2 files have the file creation time (in Unix Epoch format) appended to each file when it is

created.

Format

output alert_unified2: \

filename <base filename> [, <limit <size in MB>] [, nostamp] [, mpls_event_types] \

[, vlan_event_types]

output log_unified2: \

filename <base filename> [, <limit <size in MB>] [, nostamp]

output unified2: \

filename <base file name> [, <limit <size in MB>] [, nostamp] [, mpls_event_types] \

[, vlan_event_types]

Example

output alert_unified2: filename snort.alert, limit 128, nostamp

output log_unified2: filename snort.log, limit 128, nostamp

output unified2: filename merged.log, limit 128, nostamp

output unified2: filename merged.log, limit 128, nostamp, mpls_event_types

output unified2: filename merged.log, limit 128, nostamp, vlan_event_types

Extra Data Configurations

Unified2 also has logging support for various extra data. The following configuration items will enable these extra

data logging facilities.

config log_ipv6_extra_data

This option enables Snort to log IPv6 source and destination address as unified2 extra data events.

See section 2.1.3 for more information

enable_xff

This option enables HTTP Inspect to parse and log the original client IP present in the X-Forwarded-For, True-Client-

IP, or custom HTTP request headers along with the generated events.

See section 2.2.7 for more information

log_uri

166

This option enables HTTP Inspect to parse and log the URI data from the HTTP request and log it along with all the

generated events for that session.

See section 2.2.7 for more information

log_hostname

This option enables HTTP Inspect to parse and log the Host header data from the HTTP request and log it along with

all the generated events for that session.

See section 2.2.7 for more information

log_hostname

This option enables HTTP Inspect to parse and log the Host header data from the HTTP request and log it along with

all the generated events for that session.

See section 2.2.7 for more information

log_mailfrom

This option enables SMTP preprocessor to parse and log the senders email address extracted from the ”MAIL FROM”

command along with all the generated events for that session.

See section 2.2.8 for more information

log_rcptto

This option enables SMTP preprocessor to parse and log the recipients email address extracted from the ”RCPT TO”

command along with all the generated events for that session.

See section 2.2.8 for more information

log_filename

This option enables SMTP preprocessor to parse and log the MIME attachment filenames extracted from the Content-

Disposition header within the MIME body along with all the generated events for that session.

See section 2.2.8 for more information

log_email_hdrs

This option enables SMTP preprocessor to parse and log the SMTP email headers extracted from the SMTP data along

with all the generated events for that session.

See section 2.2.8 for more information

Reading Unified2 Files

U2SpewFoo

U2SpewFoo is a lightweight tool for dumping the contents of unified2 files to stdout.

Example usage:

u2spewfoo snort.log

167

Example Output:

(Event)

sensor id: 0 event id: 4 event second: 1299698138 event microsecond: 146591

sig id: 1 gen id: 1 revision: 0 classification: 0

priority: 0 ip source: 10.1.2.3 ip destination: 10.9.8.7

src port: 60710 dest port: 80 protocol: 6 impact_flag: 0 blocked: 0

Packet

sensor id: 0 event id: 4 event second: 1299698138

packet second: 1299698138 packet microsecond: 146591

linktype: 1 packet_length: 54

[0] 02 09 08 07 06 05 02 01 02 03 04 05 08 00 45 00E.

[16] 00 28 00 06 00 00 40 06 5C B7 0A 01 02 03 0A 09 .(....@.\.......

[32] 08 07 ED 26 00 50 00 00 00 62 00 00 00 2D 50 10 ...&.P...b...-P.

[48] 01 00 A2 BB 00 00

(ExtraDataHdr)

event type: 4 event length: 33

(ExtraData)

sensor id: 0 event id: 2 event second: 1299698138

type: 9 datatype: 1 bloblength: 9 HTTP URI: /

(ExtraDataHdr)

event type: 4 event length: 78

(ExtraData)

sensor id: 0 event id: 2 event second: 1299698138

type: 10 datatype: 1 bloblength: 12 HTTP Hostname: example.com

U2Boat

U2boat is a tool for converting unified2 files into different formats.

Currently supported conversion formats are: pcap

Example usage:

u2boat -t pcap <infile> <outfile>

2.6.8 log null

Sometimes it is useful to be able to create rules that will alert to certain types of traffic but will not cause packet log

entries. In Snort 1.8.2, the log null plugin was introduced. This is equivalent to using the -n command line option but

it is able to work within a ruletype.

Format

output log_null

Example

output log_null # like using snort -n

168

ruletype info {

type alert

output alert_fast: info.alert

output log_null

}

2.6.9 Log Limits

This section pertains to logs produced by alert fast, alert full, alert csv, and log tcpdump. unified2 also

may be given limits. Those limits are described in the respective sections.

When a configured limit is reached, the current log is closed and a new log is opened with a UNIX timestamp appended

to the configured log name.

Limits are configured as follows:

<limit> ::= <number>[(<gb>|<mb>|<kb>)]

<gb> ::= ’G’|’g’

<mb> ::= ’M’|’m’

<kb> ::= ’K’|’k’

Rollover will occur at most once per second so if limit is too small for logging rate, limit will be exceeded. Rollover

works correctly if snort is stopped/restarted.

2.7 Host Attribute Table

Snort can use information from an external source(s) to more accurately inspect network traffic. This information

saved to a file is known as a host attributes table. Host attributes are used in IPS rule evalution, IP fragment (see

section 2.2.1)/TCP stream (see section 2.2.3) reassembly policy selection, and by the application preprocessors. Host

attribute table is loaded during initialization and supports runtime reloads; Snort reloads the host attributes table when

it receives the signal SIGNAL SNORT READ ATTR TBL (See 1.11 to learn more).

△!
NOTE

To use a host attribute table and service information, Snort must be configured with the –enable-targetbased

flag.

2.7.1 Rule evaluation

In rule evaluation, service information can be used instead of the ports when the metadata service(s) in the rule matches

the service corresponding to the traffic. If the rule does not have metadata service(s), or the packet service was not

matched then the port checks are used exclusively.

2.7.2 Snort Configuration

attribute_table filename <PATH/TO/HOSTS.XML>

2.7.3 Host Attribute Table File Format

The attribute table uses an XML format and consists of two sections, a mapping section, used to reduce the size of the

file for common data elements, and the host attribute section. The mapping section is optional.

Provided below is an example attribute table

169

<SNORT_ATTRIBUTES>

<ATTRIBUTE_MAP>

<ENTRY>

<ID>1</ID>

<VALUE>Linux</VALUE>

</ENTRY>

<ENTRY>

<ID>2</ID>

<VALUE>ssh</VALUE>

</ENTRY>

</ATTRIBUTE_MAP>

<ATTRIBUTE_TABLE>

<HOST>

<IP>192.168.1.234</IP>

<OPERATING_SYSTEM>

<NAME>

<ATTRIBUTE_ID>1</ATTRIBUTE_ID>

<CONFIDENCE>100</CONFIDENCE>

</NAME>

<VENDOR>

<ATTRIBUTE_VALUE>Red Hat</ATTRIBUTE_VALUE>

<CONFIDENCE>99</CONFIDENCE>

</VENDOR>

<VERSION>

<ATTRIBUTE_VALUE>2.6</ATTRIBUTE_VALUE>

<CONFIDENCE>98</CONFIDENCE>

</VERSION>

<FRAG_POLICY>linux</FRAG_POLICY>

<STREAM_POLICY>linux</STREAM_POLICY>

</OPERATING_SYSTEM>

<SERVICES>

<SERVICE>

<PORT>

<ATTRIBUTE_VALUE>22</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

</PORT>

<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>

<PROTOCOL>

<ATTRIBUTE_ID>2</ATTRIBUTE_ID>

<CONFIDENCE>100</CONFIDENCE>

</PROTOCOL>

<APPLICATION>

<ATTRIBUTE_VALUE>OpenSSH</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

<VERSION>

<ATTRIBUTE_VALUE>3.9p1</ATTRIBUTE_VALUE>

<CONFIDENCE>93</CONFIDENCE>

</VERSION>

</APPLICATION>

</SERVICE>

<SERVICE>

<PORT>

<ATTRIBUTE_VALUE>2300</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

170

</PORT>

<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>

<PROTOCOL>

<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

</PROTOCOL>

<APPLICATION>

<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>

<CONFIDENCE>50</CONFIDENCE>

</APPLICATION>

</SERVICE>

</SERVICES>

<CLIENTS>

<CLIENT>

<IPPROTO>

<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>

<CONFIDENCE>100</CONFIDENCE>

</IPPROTO>

<PROTOCOL>

<ATTRIBUTE_VALUE>http</ATTRIBUTE_VALUE>

<CONFIDENCE>91</CONFIDENCE>

</PROTOCOL>

<APPLICATION>

<ATTRIBUTE_VALUE>IE Http Browser</ATTRIBUTE_VALUE>

<CONFIDENCE>90</CONFIDENCE>

<VERSION>

<ATTRIBUTE_VALUE>6.0</ATTRIBUTE_VALUE>

<CONFIDENCE>89</CONFIDENCE>

</VERSION>

</APPLICATION>

</CLIENT>

</CLIENTS>

</HOST>

</ATTRIBUTE_TABLE>

</SNORT_ATTRIBUTES>

A DTD for verification of the Host Attribute Table XML file is provided with the snort packages.

The confidence metric may be used to indicate the validity of a given service or client application and its respective

elements. That field is not currently used by Snort, but may be in future releases.

△!
NOTE

Snort requires that the file be a properly formatted schema of the format defined above. Empty or incorrectly

formatted files will likely cause a Fatal Error.

2.7.4 Attribute Table Example

In the example above, a host running Red Hat 2.6 is described. This host has an IP address of 192.168.1.234. On that

host, TCP port 22 is ssh (running Open SSH), and TCP port 2300 is telnet.

The IP fragmentation and TCP stream reassembly is mimicked by the ”linux” configuration (see sections 2.2.1 and

2.2.3).

171

2.7.5 Attribute Table Affect on preprocessors

• Network Layer Preprocessors

Each of the network layer preprocessors (frag3 and stream5) make use of the respective FRAG POLICY and

STREAM POLICY in terms of how data is handled for reassembly for packets being received by that host.

• Application Layer Preprocessors

The application layer preprocessors (HTTP, SMTP, FTP, Telnet, etc) make use of the SERVICE information for

connections destined to that host on that port.

For example, even if the telnet portion of the FTP/Telnet preprocessor is only configured to inspect port 23,

Snort will inspect packets for a connection to 192.168.1.234 port 2300 as telnet.

Conversely, if, for example, HTTP Inspect is configured to inspect traffic on port 2300, HTTP Inspect will NOT

process the packets on a connection to 192.168.1.234 port 2300 because it is identified as telnet.

Below is a list of the common services used by Snort’s application layer preprocessors and Snort rules (see below).

http ftp ftp-data telnet smtp ssh tftp

dcerpc netbios-dgm netbios-ns netbios-ssn nntp finger sunrpc

dns isakmp mysql oracle cvs shell x11

imap pop2 pop3 snmp

Attribute Table Affect on rules

Snort uses service information in two ways; initialization of detection engine and as a detection criteria. To take

advantage of this, Snort rules must contain the metadata: service SERVICE convention specified. During rule

evaluation the default behavior will check first that the packet has been matched to a service, and then check that the

packet’s service matches the service(s) specified in the rule; if both these checks passed then Snort will disable source

and destination port checks for the rule.

Snort 2.9.8 provides new functionality to control how rules use service information known as ”service overrides”.

Service overrides are specified in the same way that services are specified in the rule, or more simply as a ”reserved”

SERVICE. The table below defines the new reserved service override names.

Metadata Description

service and-ports

• Packet service must be set.

• Packet service must match one of the rule services.

• Packet must match the ports specified in the rule header.

service or-ports

• Packet service is set and it matches one of the rule services (skipping port

checks).

• Packet service is set but it DOES NOT match one of the rule services; packet

must match the ports specified in the rule header.

• Packet service is NOT set, only perform port checks.

172

service else-ports

• Packet service is set, packet must match one of the rule services.

• Packet service is NOT set; then packet must match the ports specified in the

rule header.

This is the default behavior of a rule containing metadata service information.

service unknown The keyword ”unknown” is an alias for ”service else-ports” above. It is intended

for use in rules that do not contain metadata service information (port only rules).

When used in a rule that doesn’t otherwise contain metadata (rule only specifies

ports), the evaluation is:

• Packet service must NOT be set; then match ports.

2.8 Dynamic Modules

Dynamically loadable modules were introduced with Snort 2.6. They can be loaded via directives in snort.conf or

via command-line options.

2.8.1 Format

<directive> <parameters>

2.8.2 Directives

Syntax Description

dynamicpreprocessor [file

<shared library path> |
directory <directory of

shared libraries>]

Tells snort to load the dynamic preprocessor shared library (if

file is used) or all dynamic preprocessor shared libraries (if di-

rectory is used). Specify file, followed by the full or rel-

ative path to the shared library. Or, specify directory, fol-

lowed by the full or relative path to a directory of preprocessor

shared libraries. (Same effect as --dynamic-preprocessor-lib or

--dynamic-preprocessor-lib-dir options). See chapter 4 for more

information on dynamic preprocessor libraries.

dynamicengine [file <shared

library path> | directory

<directory of shared

libraries>]

Tells snort to load the dynamic engine shared library (if file is used) or

all dynamic engine shared libraries (if directory is used). Specify file,

followed by the full or relative path to the shared library. Or, specify

directory, followed by the full or relative path to a directory of pre-

processor shared libraries. (Same effect as --dynamic-engine-lib or

--dynamic-preprocessor-lib-dir options). See chapter 4 for more

information on dynamic engine libraries.

dynamicdetection [file

<shared library path> |
directory <directory of

shared libraries>]

Tells snort to load the dynamic detection rules shared library (if file

is used) or all dynamic detection rules shared libraries (if directory

is used). Specify file, followed by the full or relative path to the

shared library. Or, specify directory, followed by the full or relative

path to a directory of detection rules shared libraries. (Same effect as

--dynamic-detection-lib or --dynamic-detection-lib-dir op-

tions). See chapter 4 for more information on dynamic detection rules

libraries.

173

2.9 Reloading a Snort Configuration

Snort now supports reloading a configuration in lieu of restarting Snort in so as to provide seamless traffic inspection

during a configuration change. A separate thread will parse and create a swappable configuration object while the

main Snort packet processing thread continues inspecting traffic under the current configuration. When a swappable

configuration object is ready for use, the main Snort packet processing thread will swap in the new configuration to

use and will continue processing under the new configuration. Note that for some preprocessors, existing session data

will continue to use the configuration under which they were created in order to continue with proper state for that

session. All newly created sessions will, however, use the new configuration.

2.9.1 Enabling support

To enable support for reloading a configuration, add --enable-reload to configure when compiling.

There is also an ancillary option that determines how Snort should behave if any non-reloadable options are changed

(see section 2.9.3 below). This option is enabled by default and the behavior is for Snort to restart if any non-

reloadable options are added/modified/removed. To disable this behavior and have Snort exit instead of restart, add

--disable-reload-error-restart in addition to --enable-reload to configure when compiling.

△!
NOTE

This functionality is not currently supported in Windows.

Caveat : When Snort is run on the primary network interface of an OpenBSD system, the reload and failopen

operations may not function as expected.

2.9.2 Reloading a configuration

First modify your snort.conf (the file passed to the -c option on the command line).

Then, to initiate a reload, send Snort a SIGHUP signal, e.g.

$ kill -SIGHUP <snort pid>

△!
NOTE

If reload support is not enabled, Snort will restart (as it always has) upon receipt of a SIGHUP.

△!
NOTE

An invalid configuration will still result in a fatal error, so you should test your new configuration before

issuing a reload, e.g. $ snort -c snort.conf -T

2.9.3 Non-reloadable configuration options

There are a number of option changes that are currently non-reloadable because they require changes to output, startup

memory allocations, etc. Modifying any of these options will cause Snort to restart (as a SIGHUP previously did) or

exit (if --disable-reload-error-restart was used to configure Snort).

Reloadable configuration options of note:

• Adding/modifying/removing text rules and variables are reloadable.

• Adding/modifying/removing preprocessor configurations are reloadable (except as noted below).

174

Non-reloadable configuration options of note:

• Adding/modifying/removing shared objects via dynamicdetection, dynamicengine and dynamicpreprocessor are

not reloadable, i.e. any new/modified/removed shared objects will require a restart.

• Any changes to output will require a restart.

Changes to the following options are not reloadable:

attribute_table

config alertfile

config asn1

config chroot

config daemon

config detection_filter

config flowbits_size

config interface

config logdir

config max_attribute_hosts

config max_attribute_services_per_host

config nolog

config no_promisc

config pkt_count

config rate_filter

config response

config set_gid

config set_uid

config snaplen

config threshold

dynamicdetection

dynamicengine

dynamicpreprocessor

output

In certain cases, only some of the parameters to a config option or preprocessor configuration are not reloadable.

Those parameters are listed below the relevant config option or preprocessor.

config ppm: max-rule-time <int>

rule-log

config profile_rules

filename

print

sort

config profile_preprocs

filename

print

sort

preprocessor dcerpc2

memcap

preprocessor frag3_global

max_frags

memcap

prealloc_frags

prealloc_memcap

disabled

preprocessor perfmonitor

file

175

snortfile

preprocessor sfportscan

memcap

logfile

disabled

preprocessor stream5_global

memcap

max_tcp

max_udp

max_icmp

track_tcp

track_udp

track_icmp

2.10 Multiple Configurations

Snort now supports multiple configurations based on VLAN Id or IP subnet within a single instance of Snort. This will

allow administrators to specify multiple snort configuration files and bind each configuration to one or more VLANs

or subnets rather than running one Snort for each configuration required. Each unique snort configuration file will

create a new configuration instance within snort. VLANs/Subnets not bound to any specific configuration will use the

default configuration. Each configuration can have different preprocessor settings and detection rules.

2.10.1 Creating Multiple Configurations

Default configuration for snort is specified using the existing -c option. A default configuration binds multiple vlans

or networks to non-default configurations, using the following configuration line:

config binding: <path_to_snort.conf> vlan <vlanIdList>

config binding: <path_to_snort.conf> net <ipList>

config binding: <path_to_snort.conf> policy_id <id>

path to snort.conf - Refers to the absolute or relative path to the snort.conf for specific configuration.

vlanIdList - Refers to the comma separated list of vlandIds and vlanId ranges. The format for ranges is two vlanId

separated by a ”-”. Spaces are allowed within ranges. Valid vlanId is any number in 0-4095 range. Negative

vland Ids and alphanumeric are not supported.

ipList - Refers to ip subnets. Subnets can be CIDR blocks for IPV6 or IPv4. A maximum of 512 individual IPv4

or IPv6 addresses or CIDRs can be specified.

policy id - Refers to the specific policyi id to be applied. Valid policyi id is any number in 0-4095 range.

△!
NOTE

Vlan and Subnets can not be used in the same line. Configurations can be applied based on either Vlans or

Subnets not both.

△!
NOTE

Even though Vlan Ids 0 and 4095 are reserved, they are included as valid in terms of configuring Snort.

176

2.10.2 Configuration Specific Elements

Config Options

Generally config options defined within the default configuration are global by default i.e. their value applies to all

other configurations. The following config options are specific to each configuration.

policy_id

policy_mode

policy_version

The following config options are specific to each configuration. If not defined in a configuration, the default values of

the option (not the default configuration values) take effect.

config checksum_drop

config disable_decode_alerts

config disable_decode_drops

config disable_ipopt_alerts

config disable_ipopt_drops

config disable_tcpopt_alerts

config disable_tcpopt_drops

config disable_tcpopt_experimental_alerts

config disable_tcpopt_experimental_drops

config disable_tcpopt_obsolete_alerts

config disable_tcpopt_obsolete_drops

config disable_ttcp_alerts

config disable_tcpopt_ttcp_alerts

config disable_ttcp_drops

Rules

Rules are specific to configurations but only some parts of a rule can be customized for performance reasons. If a

rule is not specified in a configuration then the rule will never raise an event for the configuration. A rule shares all

parts of the rule options, including the general options, payload detection options, non-payload detection options, and

post-detection options. Parts of the rule header can be specified differently across configurations, limited to:

Source IP address and port

Destination IP address and port

Action

A higher revision of a rule in one configuration will override other revisions of the same rule in other configurations.

Variables

Variables defined using ”var”, ”portvar” and ”ipvar” are specific to configurations. If the rules in a configuration use

variables, those variables must be defined in that configuration.

Preprocessors

Preprocessors configurations can be defined within each vlan or subnet specific configuration. Options controlling

specific preprocessor memory usage, through specific limit on memory usage or number of instances, are processed

only in default policy. The options control total memory usage for a preprocessor across all policies. These options are

ignored in non-default policies without raising an error. A preprocessor must be configured in default configuration be-

fore it can be configured in non-default configuration. This is required as some mandatory preprocessor configuration

options are processed only in default configuration.

177

Events and Output

An unique policy id can be assigned by user, to each configuration using the following config line:

config policy_id: <id>

id - Refers to a 16-bit unsigned value. This policy id will be used to identify alerts from a specific configuration in

the unified2 records.

△!
NOTE

If no policy id is specified, snort assigns 0 (zero) value to the configuration.

To enable vlanId logging in unified2 records the following option can be used.

output alert_unified2: vlan_event_types (alert logging only)

output unified2: filename <filename>, vlan_event_types (true unified logging)

filename - Refers to the absolute or relative filename.

vlan event types - When this option is set, snort will use unified2 event type 104 and 105 for IPv4 and IPv6

respectively.

△!
NOTE

Each event logged will have the vlanId from the packet if vlan headers are present otherwise 0 will be used.

2.10.3 How Configuration is applied?

Snort assigns every incoming packet to a unique configuration based on the following criteria. If VLANID is present,

then the innermost VLANID is used to find bound configuration. If the bound configuration is the default configura-

tion, then destination IP address is searched to the most specific subnet that is bound to a non-default configuration.

The packet is assigned non-default configuration if found otherwise the check is repeated using source IP address. In

the end, default configuration is used if no other matching configuration is found.

For addressed based configuration binding, this can lead to conflicts between configurations if source address is bound

to one configuration and destination address is bound to another. In this case, snort will use the first configuration in

the order of definition, that can be applied to the packet.

2.11 Active Response

Snort 2.9 includes a number of changes to better handle inline operation, including:

• a single mechanism for all responses

• fully encoded reset or icmp unreachable packets

• updated flexible response rule option

• updated react rule option

• added block and sblock rule actions

These changes are outlined below.

178

2.11.1 Enabling Active Response

This enables active responses (snort will send TCP RST or ICMP unreachable/port) when dropping a session.

./configure --enable-active-response / -DACTIVE_RESPONSE

preprocessor stream5_global: \

max_active_responses <max_rsp>, \

min_response_seconds <min_sec>

<max_rsp> ::= (0..25)

<min_sec> ::= (1..300)

Active responses will be encoded based on the triggering packet. TTL will be set to the value captured at session

pickup.

2.11.2 Configure Sniping

Configure the number of attempts to land a TCP RST within the session’s current window (so that it is accepted by the

receiving TCP). This sequence ”strafing” is really only useful in passive mode. In inline mode the reset is put straight

into the stream in lieu of the triggering packet so strafing is not necessary.

Each attempt (sent in rapid succession) has a different sequence number. Each active response will actually cause this

number of TCP resets to be sent. TCP data (sent for react) is multiplied similarly. At most 1 ICMP unreachable is

sent, if and only if attempts > 0.

./configure --enable-active-response

config response: [device <dev>] [dst_mac <MAC address>] attempts <att>

<dev> ::= ip | eth0 | etc.

<att> ::= (1..20)

<MAC address> ::= nn:nn:nn:nn:nn:nn

(n is a hex number from 0-F)

device ip will perform network layer injection. It is probably a better choice to specify an interface and avoid kernel

routing tables, etc.

dst mac will change response destination MAC address, if the device is eth0, eth1, eth2 etc. Otherwise, response

destination MAC address is derived from packet. Example:

config response: device eth0 dst_mac 00:06:76:DD:5F:E3 attempts 2

2.11.3 Flexresp

Flexresp and flexresp2 are replaced with flexresp3.

* Flexresp is deleted; these features are no longer available:

./configure --enable-flexresp / -DENABLE_RESPOND -DENABLE_RESPONSE

config flexresp: attempts 1

* Flexresp2 is deleted; these features are deprecated, non-functional, and will be deleted in a future release:

179

./configure --enable-flexresp2 / -DENABLE_RESPOND -DENABLE_RESPONSE2

config flexresp2_interface: eth0

config flexresp2_attempts: 4

config flexresp2_memcap: 1000000

config flexresp2_rows: 1000

* Flexresp3 is new: the resp rule option keyword is used to configure active responses for rules that fire.

./configure --enable-flexresp3 / -DENABLE_RESPOND -DENABLE_RESPONSE3

alert tcp any any -> any 80 (content:"a"; resp:<resp_t>; sid:1;)

* resp t includes all flexresp and flexresp2 options:

<resp_t> ::= \

rst_snd | rst_rcv | rst_all | \

reset_source | reset_dest | reset_both | icmp_net | \

icmp_host | icmp_port | icmp_all

2.11.4 React

react is a rule option keyword that enables sending an HTML page on a session and then resetting it. This is built with:

./configure --enable-react / -DENABLE_REACT

The page to be sent can be read from a file:

config react: <block.html>

or else the default is used:

<default_page> ::= \

"HTTP/1.1 403 Forbidden\r\n"

"Connection: close\r\n"

"Content-Type: text/html; charset=utf-8\r\n"

"\r\n"

"<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"\r\n" \

" \"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">\r\n" \

"<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\">\r\n" \

"<head>\r\n" \

"<meta http-equiv=\"Content-Type\" content=\"text/html; charset=UTF-8\" />\r\n" \

"<title>Access Denied</title>\r\n" \

"</head>\r\n" \

"<body>\r\n" \

"<h1>Access Denied</h1>\r\n" \

"<p>%s</p>\r\n" \

"</body>\r\n" \

"</html>\r\n";

Note that the file must contain the entire response, including any HTTP headers. In fact, the response isn’t strictly

limited to HTTP. You could craft a binary payload of arbitrary content.

Be aware of size when creating such responses. While it may be possible to respond with arbitrarily large responses,

responses for TCP sessions will need to take into account that the receiver’s window may only accept up to a certain

180

amount of data. Sending past this limit will result in truncated data. In general, the smaller the response, the more

likely it will be successful.

When the rule is configured, the page is loaded and the selected message, which defaults to:

<default_msg> ::= \

"You are attempting to access a forbidden site.
" \

"Consult your system administrator for details.";

Additional formatting operators beyond a single within a reference URL.

This is an example rule:

drop tcp any any -> any $HTTP_PORTS (\

content: "d"; msg:"Unauthorized Access Prohibited!"; \

react: <react_opts>; sid:4;)

<react_opts> ::= [msg] [, <dep_opts>]

These options are deprecated:

<dep_opts> ::= [block|warn], [proxy <port#>]

The original version sent the web page to one end of the session only if the other end of the session was port 80 or the

optional proxy port. The new version always sends the page to the client. If no page should be sent, a resp option can

be used instead. The deprecated options are ignored.

2.11.5 Rule Actions

The block and sblock actions have been introduced as synonyms for drop and sdrop to help avoid confusion between

packets dropped due to load (e.g. lack of available buffers for incoming packets) and packets blocked due to Snort’s

analysis.

181

Chapter 3

Writing Snort Rules

3.1 The Basics

Snort uses a simple, lightweight rules description language that is flexible and quite powerful. There are a number of

simple guidelines to remember when developing Snort rules that will help safeguard your sanity.

Most Snort rules are written in a single line. This was required in versions prior to 1.8. In current versions of Snort,

rules may span multiple lines by adding a backslash \ to the end of the line.

Snort rules are divided into two logical sections, the rule header and the rule options. The rule header contains

the rule’s action, protocol, source and destination IP addresses and netmasks, and the source and destination ports

information. The rule option section contains alert messages and information on which parts of the packet should be

inspected to determine if the rule action should be taken.

Figure 3.1 illustrates a sample Snort rule.

The text up to the first parenthesis is the rule header and the section enclosed in parenthesis contains the rule options.

The words before the colons in the rule options section are called option keywords.

△!
NOTE

Note that the rule options section is not specifically required by any rule, they are just used for the sake of

making tighter definitions of packets to collect or alert on (or drop, for that matter).

All of the elements in that make up a rule must be true for the indicated rule action to be taken. When taken together,

the elements can be considered to form a logical AND statement. At the same time, the various rules in a Snort rules

library file can be considered to form a large logical OR statement.

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the who, where, and what of a packet, as well as what to do in

the event that a packet with all the attributes indicated in the rule should show up. The first item in a rule is the rule

alert tcp any any -> 192.168.1.0/24 111 \

(content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

182

action. The rule action tells Snort what to do when it finds a packet that matches the rule criteria. There are 3 available

default actions in Snort, alert, log, pass. In addition, if you are running Snort in inline mode, you have additional

options which include drop, reject, and sdrop.

1. alert - generate an alert using the selected alert method, and then log the packet

2. log - log the packet

3. pass - ignore the packet

4. drop - block and log the packet

5. reject - block the packet, log it, and then send a TCP reset if the protocol is TCP or an ICMP port unreachable

message if the protocol is UDP.

6. sdrop - block the packet but do not log it.

You can also define your own rule types and associate one or more output plugins with them. You can then use the

rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious

{

type log

output log_tcpdump: suspicious.log

}

This example will create a rule type that will log to syslog and tcpdump: database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output log_tcpdump: suspicious.log

}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protocols that Snort currently analyzes for suspicious behavior

– TCP, UDP, ICMP, and IP. In the future there may be more, such as ARP, IGRP, GRE, OSPF, RIP, IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP address and port information for a given rule. The keyword any

may be used to define any address. Snort does not have a mechanism to provide host name lookup for the IP address

fields in the config file. The addresses are formed by a straight numeric IP address and a CIDR[3] block. The CIDR

block indicates the netmask that should be applied to the rule’s address and any incoming packets that are tested against

the rule. A CIDR block mask of /24 indicates a Class C network, /16 a Class B network, and /32 indicates a specific

machine address. For example, the address/CIDR combination 192.168.1.0/24 would signify the block of addresses

from 192.168.1.1 to 192.168.1.255. Any rule that used this designation for, say, the destination address would match

on any address in that range. The CIDR designations give us a nice short-hand way to designate large address spaces

with just a few characters.

In Figure 3.1, the source IP address was set to match for any computer talking, and the destination address was set to

match on the 192.168.1.0 Class C network.

183

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \

(content:"|00 01 86 a5|"; msg:"external mountd access";)

Figure 3.2: Example IP Address Negation Rule

alert tcp ![192.168.1.0/24,10.1.1.0/24] any -> \

[192.168.1.0/24,10.1.1.0/24] 111 (content:"|00 01 86 a5|"; \

msg:"external mountd access";)

Figure 3.3: IP Address Lists

There is an operator that can be applied to IP addresses, the negation operator. This operator tells Snort to match any

IP address except the one indicated by the listed IP address. The negation operator is indicated with a !. For example,

an easy modification to the initial example is to make it alert on any traffic that originates outside of the local net with

the negation operator as shown in Figure 3.2.

This rule’s IP addresses indicate any tcp packet with a source IP address not originating from the internal network and

a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is specified by enclosing a comma separated list of IP addresses

and CIDR blocks within square brackets. For the time being, the IP list may not include spaces between the addresses.

See Figure 3.3 for an example of an IP list in action.

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, including any ports, static port definitions, ranges, and by

negation. Any ports are a wildcard value, meaning literally any port. Static ports are indicated by a single port

number, such as 111 for portmapper, 23 for telnet, or 80 for http, etc. Port ranges are indicated with the range operator

:. The range operator may be applied in a number of ways to take on different meanings, such as in Figure 3.4.

Port negation is indicated by using the negation operator !. The negation operator may be applied against any of the

other rule types (except any, which would translate to none, how Zen...). For example, if for some twisted reason you

wanted to log everything except the X Windows ports, you could do something like the rule in Figure 3.5.

3.2.5 The Direction Operator

The direction operator -> indicates the orientation, or direction, of the traffic that the rule applies to. The IP address

and port numbers on the left side of the direction operator is considered to be the traffic coming from the source

host, and the address and port information on the right side of the operator is the destination host. There is also a

bidirectional operator, which is indicated with a <> symbol. This tells Snort to consider the address/port pairs in

either the source or destination orientation. This is handy for recording/analyzing both sides of a conversation, such as

log udp any any -> 192.168.1.0/24 1:1024

log udp traffic coming from any port and destination ports ranging from 1 to 1024

log tcp any any -> 192.168.1.0/24 :6000

log tcp traffic from any port going to ports less than or equal to 6000

log tcp any :1024 -> 192.168.1.0/24 500:

log tcp traffic from privileged ports less than or equal to 1024 going to ports greater than or equal to 500

Figure 3.4: Port Range Examples

184

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation

log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

telnet or POP3 sessions. An example of the bidirectional operator being used to record both sides of a telnet session is

shown in Figure 3.6.

Also, note that there is no <- operator. In Snort versions before 1.8.7, the direction operator did not have proper

error checking and many people used an invalid token. The reason the <- does not exist is so that rules always read

consistently.

3.2.6 Activate/Dynamic Rules

Activate and Dynamic rules are phased out in favor of a combination of tagging (3.7.5) and flowbits (3.6.10).

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detection engine, combining ease of use with power and flexibility. All

Snort rule options are separated from each other using the semicolon (;) character. Rule option keywords are separated

from their arguments with a colon (:) character.

There are four major categories of rule options.

general These options provide information about the rule but do not have any affect during detection

payload These options all look for data inside the packet payload and can be inter-related

non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen after a rule has “fired.”

3.4 General Rule Options

3.4.1 msg

The msg rule option tells the logging and alerting engine the message to print along with a packet dump or to an alert.

It is a simple text string that utilizes the \ as an escape character to indicate a discrete character that might otherwise

confuse Snort’s rules parser (such as the semi-colon ; character).

Format

msg:"<message text>";

3.4.2 reference

The reference keyword allows rules to include references to external attack identification systems. The plugin currently

supports several specific systems as well as unique URLs. This plugin is to be used by output plugins to provide a link

to additional information about the alert produced.

185

Make sure to also take a look at http://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing

descriptions of alerts based on of the sid (See Section 3.4.4).

Table 3.1: Supported Systems

System URL Prefix

bugtraq http://www.securityfocus.com/bid/

cve http://cve.mitre.org/cgi-bin/cvename.cgi?name=

nessus http://cgi.nessus.org/plugins/dump.php3?id=

arachnids (currently down) http://www.whitehats.com/info/IDS

mcafee http://vil.nai.com/vil/content/v

osvdb http://osvdb.org/show/osvdb/

msb http://technet.microsoft.com/en-us/security/bulletin/

url http://

Format

reference:<id system>, <id>; [reference:<id system>, <id>;]

Examples

alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio"; \

flags:AP; content:"|fff4 fffd 06|"; reference:arachnids,IDS411;)

alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-venglin-linux"; \

flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \

reference:arachnids,IDS287; reference:bugtraq,1387; \

reference:cve,CAN-2000-1574;)

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Snort generates the event when a particular rule

fires. For example gid 1 is associated with the rules subsystem and various gids over 100 are designated for specific

preprocessors and the decoder. See etc/generators in the source tree for the current generator ids in use. Note that the

gid keyword is optional and if it is not specified in a rule, it will default to 1 and the rule will be part of the general rule

subsystem. To avoid potential conflict with gids defined in Snort (that for some reason aren’t noted it etc/generators),

it is recommended that values starting at 1,000,000 be used. For general rule writing, it is not recommended that the

gid keyword be used. This option should be used with the sid keyword. (See section 3.4.4)

The file etc/gen-msg.map contains contains more information on preprocessor and decoder gids.

Format

gid:<generator id>;

Example

This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content:"BOB"; gid:1000001; sid:1; rev:1;)

186

3.4.4 sid

The sid keyword is used to uniquely identify Snort rules. This information allows output plugins to identify rules

easily. This option should be used with the rev keyword. (See section 3.4.5)

• <100 Reserved for future use

• 100-999,999 Rules included with the Snort distribution

• >=1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messages to Snort rule IDs. This information is useful when post-

processing alert to map an ID to an alert message.

Format

sid:<snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

3.4.5 rev

The rev keyword is used to uniquely identify revisions of Snort rules. Revisions, along with Snort rule id’s, allow

signatures and descriptions to be refined and replaced with updated information. This option should be used with the

sid keyword. (See section 3.4.4)

Format

rev:<revision integer>;

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content:"BOB"; sid:1000983; rev:1;)

3.4.6 classtype

The classtype keyword is used to categorize a rule as detecting an attack that is part of a more general type of attack

class. Snort provides a default set of attack classes that are used by the default set of rules it provides. Defining

classifications for rules provides a way to better organize the event data Snort produces.

Format

classtype:<class name>;

187

Example

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \

content:"expn root"; nocase; classtype:attempted-recon;)

Attack classifications defined by Snort reside in the classification.config file. The file uses the following syntax:

config classification: <class name>,<class description>,<default priority>

These attack classifications are listed in Table 3.2. They are currently ordered with 4 default priorities. A priority of 1

(high) is the most severe and 4 (very low) is the least severe.

Table 3.2: Snort Default Classifications

Classtype Description Priority

attempted-admin Attempted Administrator Privilege Gain high

attempted-user Attempted User Privilege Gain high

inappropriate-content Inappropriate Content was Detected high

policy-violation Potential Corporate Privacy Violation high

shellcode-detect Executable code was detected high

successful-admin Successful Administrator Privilege Gain high

successful-user Successful User Privilege Gain high

trojan-activity A Network Trojan was detected high

unsuccessful-user Unsuccessful User Privilege Gain high

web-application-attack Web Application Attack high

attempted-dos Attempted Denial of Service medium

attempted-recon Attempted Information Leak medium

bad-unknown Potentially Bad Traffic medium

default-login-attempt Attempt to login by a default username and

password

medium

denial-of-service Detection of a Denial of Service Attack medium

misc-attack Misc Attack medium

non-standard-protocol Detection of a non-standard protocol or event medium

rpc-portmap-decode Decode of an RPC Query medium

successful-dos Denial of Service medium

successful-recon-largescale Large Scale Information Leak medium

successful-recon-limited Information Leak medium

suspicious-filename-detect A suspicious filename was detected medium

suspicious-login An attempted login using a suspicious user-

name was detected

medium

system-call-detect A system call was detected medium

unusual-client-port-connection A client was using an unusual port medium

web-application-activity Access to a potentially vulnerable web appli-

cation

medium

icmp-event Generic ICMP event low

misc-activity Misc activity low

network-scan Detection of a Network Scan low

not-suspicious Not Suspicious Traffic low

protocol-command-decode Generic Protocol Command Decode low

string-detect A suspicious string was detected low

unknown Unknown Traffic low

tcp-connection A TCP connection was detected very low

188

Warnings

The classtype option can only use classifications that have been defined in snort.conf by using the config

classification option. Snort provides a default set of classifications in classification.config that are used

by the rules it provides.

3.4.7 priority

The priority tag assigns a severity level to rules. A classtype rule assigns a default priority (defined by the config

classification option) that may be overridden with a priority rule. Examples of each case are given below.

Format

priority:<priority integer>;

Examples

alert tcp any any -> any 80 (msg:"WEB-MISC phf attempt"; flags:A+; \

content:"/cgi-bin/phf"; priority:10;)

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \

dsize:>128; classtype:attempted-admin; priority:10);

3.4.8 metadata

The metadata tag allows a rule writer to embed additional information about the rule, typically in a key-value format.

Certain metadata keys and values have meaning to Snort and are listed in Table 3.3. Keys other than those listed in the

table are effectively ignored by Snort and can be free-form, with a key and a value. Multiple keys are separated by a

comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys

Key Description Value Format

engine Indicate a Shared Library Rule ”shared”

soid Shared Library Rule Generator and SID gid|sid

service Target-Based Service Identifier ”http”

△!
NOTE

The service Metadata Key is only meaningful when a Host Attribute Table is provided. See Section 2.7 for

details on the Host Attribute Table.

.

Format

The examples below show an stub rule from a shared library rule. The first uses multiple metadata keywords, the

second a single metadata keyword, with keys separated by commas.

metadata:key1 value1;

metadata:key1 value1, key2 value2;

189

Examples

alert tcp any any -> any 80 (msg:"Shared Library Rule Example"; \

metadata:engine shared; metadata:soid 3|12345;)

alert tcp any any -> any 80 (msg:"Shared Library Rule Example"; \

metadata:engine shared, soid 3|12345;)

alert tcp any any -> any 80 (msg:"HTTP Service Rule Example"; \

metadata:service http;)

3.4.9 General Rule Quick Reference

Table 3.4: General rule option keywords

Keyword Description

msg The msg keyword tells the logging and alerting engine the message to print with

the packet dump or alert.

reference The reference keyword allows rules to include references to external attack iden-

tification systems.

gid The gid keyword (generator id) is used to identify what part of Snort generates the

event when a particular rule fires.

sid The sid keyword is used to uniquely identify Snort rules.

rev The rev keyword is used to uniquely identify revisions of Snort rules.

classtype The classtype keyword is used to categorize a rule as detecting an attack that is

part of a more general type of attack class.

priority The priority keyword assigns a severity level to rules.

metadata The metadata keyword allows a rule writer to embed additional information about

the rule, typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important features of Snort. It allows the user to set rules that search for

specific content in the packet payload and trigger response based on that data. Whenever a content option pattern

match is performed, the Boyer-Moore pattern match function is called and the (rather computationally expensive) test

is performed against the packet contents. If data exactly matching the argument data string is contained anywhere

within the packet’s payload, the test is successful and the remainder of the rule option tests are performed. Be aware

that this test is case sensitive.

The option data for the content keyword is somewhat complex; it can contain mixed text and binary data. The binary

data is generally enclosed within the pipe (|) character and represented as bytecode. Bytecode represents binary data

as hexadecimal numbers and is a good shorthand method for describing complex binary data. The example below

shows use of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one rule. This allows rules to be tailored for less false positives.

If the rule is preceded by a !, the alert will be triggered on packets that do not contain this content. This is useful when

writing rules that want to alert on packets that do not match a certain pattern

190

△!
NOTE

Also note that the following characters must be escaped inside a content rule:

; \ "

Format

content:[!]"<content string>";

Examples

alert tcp any any -> any 139 (content:"|5c 00|P|00|I|00|P|00|E|00 5c|";)

alert tcp any any -> any 80 (content:!"GET";)

△!
NOTE

A ! modifier negates the results of the entire content search, modifiers included. For example, if using

content:!"A"; within:50; and there are only 5 bytes of payload and there is no ”A” in those 5 bytes, the

result will return a match. If there must be 50 bytes for a valid match, use isdataat as a pre-cursor to the

content.

Changing content behavior

The content keyword has a number of modifier keywords. The modifier keywords change how the previously speci-

fied content works. These modifier keywords are:

Table 3.5: Content Modifiers
Modifier Section

nocase 3.5.5

rawbytes 3.5.6

depth 3.5.7

offset 3.5.8

distance 3.5.9

within 3.5.10

http client body 3.5.11

http cookie 3.5.12

http raw cookie 3.5.13

http header 3.5.14

http raw header 3.5.15

http method 3.5.16

http uri 3.5.17

http raw uri 3.5.18

http stat code 3.5.19

http stat msg 3.5.20

fast pattern 3.5.22

3.5.2 protected content

The protected content keyword provides much of the functionality of the content keyword, however it performs and is

utilized in a very different manner. The primary advantage protected content has over content is that protected allows

191

one to hide the target contents by only revealing secure hash digests of said content. As with the content keyword,

its primary purpose is to match strings of specific bytes. The search is performed by hashing portions of incoming

packets and comparing the results against the hash provided, and as such, it is computationally expensive.

Currently, it is possible to utilize the MD5, SHA256, and SHA512 hash algorithms with the protected content key-

word. A hashing algorithm must be specified in the rule using hash if a default has not be set in the Snort configuration.

Additionally, a length modifier must be specified with protected to indicate the length of the raw data.

As with content, it is possible to use multiple protected content rules can in one rule. Additionally, it is possible to

mix multiple protected content rules with multiple content rules.

If the rule is preceded by a !, the alert will be triggered on packets that do not contain the target content. This is useful

when writing rules that want to alert on packets that do not match a certain pattern

△!
NOTE

The protected content keyword can be used with some (but not all) of the content modifiers. Those not

supported include:

nocase

fast_pattern

depth

within

Format

protected_content:[!]"<content hash>", length:orig_len[, hash:md5|sha256|sha512];

Examples

The following alert on the string ”HTTP”:

alert tcp any any <> any 80 (msg:"MD5 Alert";

protected_content:"293C9EA246FF9985DC6F62A650F78986"; hash:md5; offset:0; length:4;)

alert tcp any any <> any 80 (msg:"SHA256 Alert";

protected_content:"56D6F32151AD8474F40D7B939C2161EE2BBF10023F4AF1DBB3E13260EBDC6342";

hash:sha256; offset:0; length:4;)

△!
NOTE

A ! modifier negates the results of the entire content search, modifiers included. For example, if using

content:!"A"; within:50; and there are only 5 bytes of payload and there is no ”A” in those 5 bytes, the

result will return a match. If there must be 50 bytes for a valid match, use isdataat as a pre-cursor to the

content.

3.5.3 hash

The hash keyword is used to specify the hashing algorithm to use when matching a protected content rule. If a

default algorithm is not specified in the Snort configuration, a protected content rule must specify the algorithm used.

Currently, MD5, SHA256, and SHA512 are supported.

Format

hash:[md5|sha256|sha512];

192

3.5.4 length

The length keyword is used to specify the original length of the content specified in a protected content rule digest.

The value provided must be greater than 0 and less than 65536.

Format

length:[<original_length>];

3.5.5 nocase

The nocase keyword allows the rule writer to specify that the Snort should look for the specific pattern, ignoring case.

nocase modifies the previous content keyword in the rule.

Format

nocase;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER root"; nocase;)

3.5.6 rawbytes

The rawbytes keyword allows rules to look at the raw packet data, ignoring any decoding that was done by preproces-

sors. This acts as a modifier to the previous content 3.5.1 option.

HTTP Inspect has a set of keywords to use raw data, such as http raw cookie, http raw header, http raw uri

etc that match on specific portions of the raw HTTP requests and responses.

Most other preprocessors use decoded/normalized data for content match by default, if rawbytes is not specified

explicitly. Therefore, rawbytes should be specified in order to inspect arbitrary raw data from the packet.

format

rawbytes;

Example

This example tells the content pattern matcher to look at the raw traffic, instead of the decoded traffic provided by the

Telnet decoder.

alert tcp any any -> any 21 (msg:"Telnet NOP"; content:"|FF F1|"; rawbytes;)

3.5.7 depth

The depth keyword allows the rule writer to specify how far into a packet Snort should search for the specified pattern.

depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look for the specified pattern within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous content keyword, there must be a content in the rule before depth

is specified.

193

This keyword allows values greater than or equal to the pattern length being searched. The minimum allowed value is

1. The maximum allowed value for this keyword is 65535.

The value can also be set to a string value referencing a variable extracted by the byte extract keyword in the same

rule.

Format

depth:[<number>|<var_name>];

3.5.8 offset

The offset keyword allows the rule writer to specify where to start searching for a pattern within a packet. offset

modifies the previous ’content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the specified pattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before offset is

specified.

This keyword allows values from -65535 to 65535.

The value can also be set to a string value referencing a variable extracted by the byte extract keyword in the same

rule.

Format

offset:[<number>|<var_name>];

Example

The following example shows use of a combined content, offset, and depth search rule.

alert tcp any any -> any 80 (content:"cgi-bin/phf"; offset:4; depth:20;)

3.5.9 distance

The distance keyword allows the rule writer to specify how far into a packet Snort should ignore before starting to

search for the specified pattern relative to the end of the previous pattern match.

This can be thought of as exactly the same thing as offset (See Section 3.5.8), except it is relative to the end of the last

pattern match instead of the beginning of the packet.

This keyword allows values from -65535 to 65535.

The value can also be set to a string value referencing a variable extracted by the byte extract keyword in the same

rule.

Format

distance:[<byte_count>|<var_name>];

194

Example

The rule below maps to a regular expression of /ABC.{1,}DEF/.

alert tcp any any -> any any (content:"ABC"; content:"DEF"; distance:1;)

3.5.10 within

The within keyword is a content modifier that makes sure that at most N bytes are between pattern matches using the

content keyword (See Section 3.5.1). It’s designed to be used in conjunction with the distance (Section 3.5.9) rule

option.

This keyword allows values greater than or equal to pattern length being searched. The maximum allowed value for

this keyword is 65535.

The value can also be set to a string value referencing a variable extracted by the byte extract keyword in the same

rule.

Format

within:[<byte_count>|<var_name>];

Examples

This rule constrains the search of EFG to not go past 10 bytes past the ABC match.

alert tcp any any -> any any (content:"ABC"; content:"EFG"; within:10;)

3.5.11 http client body

The http client body keyword is a content modifier that restricts the search to the body of an HTTP client request.

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before ’http client body’

is specified.

The amount of data that is inspected with this option depends on the post depth config option of HttpInspect. Pattern

matches with this keyword wont work when post depth is set to -1.

Format

http_client_body;

Examples

This rule constrains the search for the pattern ”EFG” to the raw body of an HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_client_body;)

△!
NOTE

The http client body modifier is not allowed to be used with the rawbytes modifier for the same content.

195

3.5.12 http cookie

The http cookie keyword is a content modifier that restricts the search to the extracted Cookie Header field (excluding

the header name itself and the CRLF terminating the header line) of a HTTP client request or a HTTP server response

(per the configuration of HttpInspect 2.2.7). The Cookie buffer does not include the header names (Cookie: for HTTP

requests or Set-Cookie: for HTTP responses) or leading spaces and the CRLF terminating the header line. These

are included in the HTTP header buffer.

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http cookie

is specified. This keyword is dependent on the enable cookie config option. The Cookie Header field will be

extracted only when this option is configured. If enable cookie is not specified, the cookie still ends up in HTTP

header. When enable cookie is not specified, using http cookie is the same as using http header.

The extracted Cookie Header field may be NORMALIZED, per the configuration of HttpInspect (see 2.2.7).

Format

http_cookie;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Cookie Header field of a HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_cookie;)

△!
NOTE

The http cookie modifier is not allowed to be used with the rawbytes or fast pattern modifiers for the

same content.

3.5.13 http raw cookie

The http raw cookie keyword is a content modifier that restricts the search to the extracted UNNORMALIZED Cookie

Header field of a HTTP client request or a HTTP server response (per the configuration of HttpInspect 2.2.7).

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http raw cookie

is specified. This keyword is dependent on the enable cookie config option. The Cookie Header field will be ex-

tracted only when this option is configured.

Format

http_raw_cookie;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Unnormalized Cookie Header field of a HTTP

client request.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_raw_cookie;)

△!
NOTE

The http raw cookie modifier is not allowed to be used with the rawbytes, http cookie or fast pattern

modifiers for the same content.

196

3.5.14 http header

The http header keyword is a content modifier that restricts the search to the extracted Header fields of a HTTP client

request or a HTTP server response (per the configuration of HttpInspect 2.2.7).

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http header

is specified.

The extracted Header fields may be NORMALIZED, per the configuration of HttpInspect (see 2.2.7).

Format

http_header;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Header fields of a HTTP client request or a HTTP

server response.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_header;)

△!
NOTE

The http header modifier is not allowed to be used with the rawbytes modifier for the same content.

3.5.15 http raw header

The http raw header keyword is a content modifier that restricts the search to the extracted UNNORMALIZED Header

fields of a HTTP client request or a HTTP server response (per the configuration of HttpInspect 2.2.7).

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http raw header

is specified.

Format

http_raw_header;

Examples

This rule constrains the search for the pattern ”EFG” to the extracted Header fields of a HTTP client request or a HTTP

server response.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_raw_header;)

△!
NOTE

The http raw header modifier is not allowed to be used with the rawbytes, http header or fast pattern

modifiers for the same content.

197

3.5.16 http method

The http method keyword is a content modifier that restricts the search to the extracted Method from a HTTP client

request.

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http method

is specified.

Format

http_method;

Examples

This rule constrains the search for the pattern ”GET” to the extracted Method from a HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content:"GET"; http_method;)

△!
NOTE

The http method modifier is not allowed to be used with the rawbytes or fast pattern modifiers for the

same content.

3.5.17 http uri

The http uri keyword is a content modifier that restricts the search to the NORMALIZED request URI field . Using a

content rule option followed by a http uri modifier is the same as using a uricontent by itself (see: 3.5.23).

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http uri

is specified.

Format

http_uri;

Examples

This rule constrains the search for the pattern ”EFG” to the NORMALIZED URI.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_uri;)

△!
NOTE

The http uri modifier is not allowed to be used with the rawbytes modifier for the same content.

3.5.18 http raw uri

The http raw uri keyword is a content modifier that restricts the search to the UNNORMALIZED request URI field .

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http raw uri

is specified.

198

Format

http_raw_uri;

Examples

This rule constrains the search for the pattern ”EFG” to the UNNORMALIZED URI.

alert tcp any any -> any 80 (content:"ABC"; content:"EFG"; http_raw_uri;)

△!
NOTE

The http raw uri modifier is not allowed to be used with the rawbytes, http uri or fast pattern mod-

ifiers for the same content.

3.5.19 http stat code

The http stat code keyword is a content modifier that restricts the search to the extracted Status code field from a

HTTP server response.

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http stat code

is specified.

The Status Code field will be extracted only if the extended response inspection is configured for the HttpInspect (see

2.2.7).

Format

http_stat_code;

Examples

This rule constrains the search for the pattern ”200” to the extracted Status Code field of a HTTP server response.

alert tcp any any -> any 80 (content:"ABC"; content:"200"; http_stat_code;)

△!
NOTE

The http stat code modifier is not allowed to be used with the rawbytes or fast pattern modifiers for

the same content.

3.5.20 http stat msg

The http stat msg keyword is a content modifier that restricts the search to the extracted Status Message field from a

HTTP server response.

As this keyword is a modifier to the previous content keyword, there must be a content in the rule before http stat msg

is specified.

The Status Message field will be extracted only if the extended response inspection is configured for the HttpInspect

(see 2.2.7).

199

Format

http_stat_msg;

Examples

This rule constrains the search for the pattern ”Not Found” to the extracted Status Message field of a HTTP server

response.

alert tcp any any -> any 80 (content:"ABC"; content:"Not Found"; http_stat_msg;)

△!
NOTE

The http stat msg modifier is not allowed to be used with the rawbytes or fast pattern modifiers for

the same content.

3.5.21 http encode

The http encode keyword will enable alerting based on encoding type present in a HTTP client request or a HTTP

server response (per the configuration of HttpInspect 2.2.7).

There are several keywords associated with http encode. The keywords ’uri’, ’header’ and ’cookie’ determine

the HTTP fields used to search for a particular encoding type. The keywords ’utf8’, ’double encode’, ’non ascii’,

’uencode’, ’iis encode’, ’ascii’ and ’bare byte’ determine the encoding type which would trigger the alert. These

keywords can be combined using a OR operation. Negation is allowed on these keywords.

The config option ’normalize headers’ needs to be turned on for rules to work with the keyword ’header’. The keyword

’cookie’ is dependent on config options ’enable cookie’ and ’normalize cookies’ (see 2.2.7). This rule option will not

be able to detect encodings if the specified HTTP fields are not NORMALIZED.

Option Description

uri Check for the specified encoding type in HTTP client request URI field.

header Check for the specified encoding type in HTTP request or HTTP response header

fields (depending on the packet flow)

cookie Check for the specified encoding type in HTTP request or HTTP response cookie

header fields (depending on the packet flow)

utf8 Check for utf8 encoding in the specified buffer

double encode Check for double encoding in the specified buffer

non ascii Check for non-ASCII encoding in the specified buffer

uencode Check for u-encoding in the specified buffer

bare byte Check for bare byte encoding in the specified buffer

ascii Check for ascii encoding in the specified buffer

iis encode Check for IIS Unicode encoding in the specified buffer

Format

http_encode:<http buffer type>, [!]<encoding type>

http_encode:[uri|header|cookie], [!][<utf8|double_encode|non_ascii|uencode|bare_byte|ascii|iis_encode>];

Examples

alert tcp any any -> any any (msg:"UTF8/UEncode Encoding present"; http_encode:uri,utf8|uencode;)

alert tcp any any -> any any (msg:"No UTF8"; http_encode:uri,!utf8;)

200

△!
NOTE

Negation(!) and OR(|) operations cannot be used in conjunction with each other for the http encode key-

word. The OR and negation operations work only on the encoding type field and not on http buffer type

field.

3.5.22 fast pattern

The fast pattern keyword is a content modifier that sets the content within a rule to be used with the fast pattern

matcher. The default behavior of fast pattern determination is to use the longest HTTP buffer content. If no HTTP

buffer is present, then the fast pattern is the longest content. Given this behavior, it is useful if a shorter content is more

”unique” than the longer content, meaning the shorter content is less likely to be found in a packet than the longer

content.

The fast pattern matcher is used to select only those rules that have a chance of matching by using a content in the rule

for selection and only evaluating that rule if the content is found in the payload. Though this may seem to be overhead,

it can significantly reduce the number of rules that need to be evaluated and thus increases performance. The better

the content used for the fast pattern matcher, the less likely the rule will needlessly be evaluated.

As this keyword is a modifier to the previous content keyword, there must be a content rule option in the rule before

fast pattern is specified. The fast pattern option may be specified only once per rule.

△!
NOTE

The fast pattern modifier cannot be used with the following http content modifiers: http cookie,

http raw uri, http raw header, http raw cookie, http method, http stat code, http stat msg.

△!
NOTE

The fast pattern modifier can be used with negated contents only if those contents are not modified with

offset, depth, distance or within.

△!
NOTE

The fast pattern matcher is always case insensitive.

Format

The fast pattern option can be used alone or optionally take arguments. When used alone, the meaning is simply

to use the specified content as the fast pattern content for the rule.

fast_pattern;

The optional argument only can be used to specify that the content should only be used for the fast pattern matcher

and should not be evaluated as a rule option. This is useful, for example, if a known content must be located in the

payload independent of location in the payload, as it saves the time necessary to evaluate the rule option. Note that (1)

the modified content must be case insensitive since patterns are inserted into the pattern matcher in a case insensitive

manner, (2) negated contents cannot be used and (3) contents cannot have any positional modifiers such as offset,

depth, distance or within.

fast_pattern:only;

The optional argument <offset>,<length> can be used to specify that only a portion of the content should be used

for the fast pattern matcher. This is useful if the pattern is very long and only a portion of the pattern is necessary to

satisfy ”uniqueness” thus reducing the memory required to store the entire pattern in the fast pattern matcher.

201

fast_pattern:<offset>,<length>;

△!
NOTE

The optional arguments only and <offset>,<length> are mutually exclusive.

Examples

This rule causes the pattern ”IJKLMNO” to be used with the fast pattern matcher, even though it is shorter than the

earlier pattern ”ABCDEFGH”.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"IJKLMNO"; fast_pattern;)

This rule says to use the content ”IJKLMNO” for the fast pattern matcher and that the content should only be used for

the fast pattern matcher and not evaluated as a content rule option.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"IJKLMNO"; nocase; fast_pattern:only;)

This rule says to use ”JKLMN” as the fast pattern content, but still evaluate the content rule option as ”IJKLMNO”.

alert tcp any any -> any 80 (content:"ABCDEFGH"; content:"IJKLMNO"; fast_pattern:1,5;)

3.5.23 uricontent

The uricontent keyword in the Snort rule language searches the NORMALIZED request URI field. This is equiv-

alent to using the http uri modifier to a content keyword. As such if you are writing rules that include things that

are normalized, such as %2f or directory traversals, these rules will not alert. The reason is that the things you are

looking for are normalized out of the URI buffer.

For example, the URI:

/scripts/..%c0%af../winnt/system32/cmd.exe?/c+ver

will get normalized into:

/winnt/system32/cmd.exe?/c+ver

Another example, the URI:

/cgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaa/..%252fp%68f?

will get normalized into:

/cgi-bin/phf?

When writing a uricontent rule, write the content that you want to find in the context that the URI will be normalized.

For example, if Snort normalizes directory traversals, do not include directory traversals.

You can write rules that look for the non-normalized content by using the content option. (See Section 3.5.1)

uricontent can be used with several of the modifiers available to the content keyword. These include:

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.2.7.

202

Table 3.6: Uricontent Modifiers
Modifier Section

nocase 3.5.5

depth 3.5.7

offset 3.5.8

distance 3.5.9

within 3.5.10

fast pattern 3.5.22

Format

uricontent:[!]"<content string>";

△!
NOTE

uricontent cannot be modified by a rawbytes modifier or any of the other HTTP modifiers. If you wish to

search the UNNORMALIZED request URI field, use the http raw uri modifier with a content option.

3.5.24 urilen

The urilen keyword in the Snort rule language specifies the exact length, the minimum length, the maximum length,

or range of URI lengths to match. By default the raw uri buffer will be used. With the optional <uribuf> argument,

you can specify whether the raw or normalized buffer are used.

Format

urilen:min<>max[,<uribuf>];

urilen:[<|>]<number>[,<uribuf>];

<uribuf> : "norm" | "raw"

The following example will match URIs that are 5 bytes long:

urilen:5;

The following example will match URIs that are shorter than 5 bytes:

urilen:<5;

The following example will match URIs that are greater than 5 bytes and less than 10 bytes (inclusive):

urilen:5<>10;

The following example will match URIs that are greater than 500 bytes using the normalized URI buffer:

urilen:>500,norm;

The following example will match URIs that are greater than 500 bytes explicitly stating to use the raw URI buffer:

urilen:>500,raw;

This option works in conjunction with the HTTP Inspect preprocessor specified in Section 2.2.7.

203

3.5.25 isdataat

Verify that the payload has data at a specified location, optionally looking for data relative to the end of the previous

content match.

Format

isdataat:[!]<int>[, relative|rawbytes];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,relative; \

content:!"|0a|"; within:50;)

This rule looks for the string PASS exists in the packet, then verifies there is at least 50 bytes after the end of the string

PASS, then verifies that there is not a newline character within 50 bytes of the end of the PASS string.

When the rawbytes modifier is specified with isdataat, it looks at the raw packet data, ignoring any decoding that

was done by the preprocessors. This modifier will work with the relative modifier as long as the previous content

match was in the raw packet data.

A ! modifier negates the results of the isdataat test. It will alert if a certain amount of data is not present within

the payload. For example, the rule with modifiers content:"foo"; isdataat:!10,relative; would alert if there

were not 10 bytes after ”foo” before the payload ended.

3.5.26 pcre

The pcre keyword allows rules to be written using perl compatible regular expressions. For more detail on what can

be done via a pcre regular expression, check out the PCRE web site http://www.pcre.org

Format

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUBPHMCOIDKYS]";

The post-re modifiers set compile time flags for the regular expression. See tables 3.7, 3.8, and 3.9 for descriptions of

each modifier.

Table 3.7: Perl compatible modifiers for pcre

i case insensitive

s include newlines in the dot metacharacter

m By default, the string is treated as one big line of characters. ˆ and $ match at

the beginning and ending of the string. When m is set, ˆ and $ match immediately

following or immediately before any newline in the buffer, as well as the very start

and very end of the buffer.

x whitespace data characters in the pattern are ignored except when escaped or in-

side a character class

△!
NOTE

The modifiers R (relative) and B (rawbytes) are not allowed with any of the HTTP modifiers such as U, I, P,

H, D, M, C, K, S and Y.

204

Table 3.8: PCRE compatible modifiers for pcre

A the pattern must match only at the start of the buffer (same as ˆ)

E Set $ to match only at the end of the subject string. Without E, $ also matches

immediately before the final character if it is a newline (but not before any other

newlines).

G Inverts the ”greediness” of the quantifiers so that they are not greedy by default,

but become greedy if followed by ”?”.

Example

This example performs a case-insensitive search for the HTTP URI foo.php?id=<some numbers>

alert tcp any any -> any 80 (content:"/foo.php?id="; pcre:"/\/foo.php?id=[0-9]{1,10}/iU";)

△!
NOTE

It is wise to have at least one content keyword in a rule that uses pcre. This allows the fast-pattern matcher

to filter out non-matching packets so that the pcre evaluation is not performed on each and every packet

coming across the wire.

△!
NOTE

Snort’s handling of multiple URIs with PCRE does not work as expected. PCRE when used without a

uricontent only evaluates the first URI. In order to use pcre to inspect all URIs, you must use either a

content or a uricontent.

3.5.27 pkt data

This option sets the cursor used for detection to the raw transport payload.

Any relative or absolute content matches (without HTTP modifiers or rawbytes) and other payload detecting rule

options that follow pkt data in a rule will apply to the raw TCP/UDP payload or the normalized buffers (in case of

telnet, smtp normalization) until the cursor (used for detection) is set again.

This rule option can be used several times in a rule.

Format

pkt_data;

Example

alert tcp any any -> any any(msg:"Absolute Match"; pkt_data; content:"BLAH"; offset:0; depth:10;)

alert tcp any any -> any any(msg:"PKT DATA"; pkt_data; content:"foo"; within:10;)

alert tcp any any -> any any(msg:"PKT DATA"; pkt_data; content:"foo";)

alert tcp any any -> any any(msg:"PKT DATA"; pkt_data; pcre:"/foo/i";)

205

Table 3.9: Snort specific modifiers for pcre

R Match relative to the end of the last pattern match. (Similar to distance:0;)

U Match the decoded URI buffers (Similar to uricontent and http uri). This

modifier is not allowed with the unnormalized HTTP request uri buffer modifier(I)

for the same content.

I Match the unnormalized HTTP request uri buffer (Similar to http raw uri). This

modifier is not allowed with the HTTP request uri buffer modifier(U) for the same

content.

P Match unnormalized HTTP request body (Similar to http client body).

For SIP message, match SIP body for request or response (Similar to sip body).

H Match normalized HTTP request or HTTP response header (Similar to

http header). This modifier is not allowed with the unnormalized HTTP request

or HTTP response header modifier(D) for the same content.

For SIP message, match SIP header for request or response (Similar to

sip header).

D Match unnormalized HTTP request or HTTP response header (Similar to

http raw header). This modifier is not allowed with the normalized HTTP re-

quest or HTTP response header modifier(H) for the same content.

M Match normalized HTTP request method (Similar to http method)

C Match normalized HTTP request or HTTP response cookie (Similar to

http cookie). This modifier is not allowed with the unnormalized HTTP request

or HTTP response cookie modifier(K) for the same content.

K Match unnormalized HTTP request or HTTP response cookie (Similar to

http raw cookie). This modifier is not allowed with the normalized HTTP re-

quest or HTTP response cookie modifier(C) for the same content.

S Match HTTP response status code (Similar to http stat code)

Y Match HTTP response status message (Similar to http stat msg)

B Do not use the decoded buffers (Similar to rawbytes)

O Override the configured pcre match limit and pcre match limit recursion for this

expression (See section 2.1.3). It completely ignores the limits while evaluating

the pcre pattern specified.

3.5.28 file data

This option sets the cursor used for detection to one of the following buffers: 1. When the traffic being detected

is HTTP it sets the buffer to, a. HTTP response body (without chunking/compression/normalization) b. HTTP de-

chunked response body c. HTTP decompressed response body (when inspect gzip is turned on) d. HTTP normal-

ized response body (when normalized javascript is turned on) e. HTTP UTF normalized response body (when

normalize utf is turned on) f. All of the above 2. When the traffic being detected is SMTP/POP/IMAP it sets the

buffer to, a. SMTP/POP/IMAP data body (including Email headers and MIME when decoding is turned off) b. Base64

decoded MIME attachment (when b64 decode depth is greater than -1) c. Non-Encoded MIME attachment (when

bitenc decode depth is greater than -1) d. Quoted-Printable decoded MIME attachment (when qp decode depth

is greater than -1) e. Unix-to-Unix decoded attachment (when uu decode depth is greater than -1) 3. If it is not set

by 1 and 2, it will be set to the payload.

Any relative or absolute content matches (without HTTP modifiers or rawbytes) and payload detecting rule options

that follow file data in a rule will apply to this buffer until explicitly reset by other rule options.

This rule option can be used several time in a rule.

The argument mime to file data is deprecated. The rule options file data will itself point to the decoded MIME

attachment.

206

Format

file_data;

Example

alert tcp any any -> any any(msg:"Absolute Match"; file_data; content:"BLAH"; offset:0; depth:10;)

alert tcp any any -> any any(msg:"FILE DATA"; file_data; content:"foo"; within:10;)

alert tcp any any -> any any(msg:"FILE DATA"; file_data; content:"foo";)

alert tcp any any -> any any(msg:"FILE DATA"; file_data; pcre:"/foo/i";)

The following rule searches for content "foo" within the file_data buffer and content "bar" within the

entire packet payload. The rule option pkt_data will reset the cursor used for detection to the

TCP payload.

alert tcp any any -> any any(msg:"FILE DATA"; file_data; content:"foo"; pkt_data; content:"bar";)

3.5.29 base64 decode

This option is used to decode the base64 encoded data. This option is particularly useful in case of HTTP headers such

as HTTP authorization headers. This option unfolds the data before decoding it.

Format

base64_decode[:[bytes <bytes_to_decode>][,][offset <offset>[, relative]]];

Option Description

bytes Number of base64 encoded bytes to decode. This argument takes positive and

non-zero values only. When this option is not specified we look for base64 en-

coded data till either the end of header line is reached or end of packet payload is

reached.

offset Determines the offset relative to the doe ptr when the option relative is specified

or relative to the start of the packet payload to begin inspection of base64 encoded

data. This argument takes positive and non-zero values only.

relative Specifies the inspection for base64 encoded data is relative to the doe ptr.

The above arguments to base64 decode are optional.

△!
NOTE

This option can be extended to protocols with folding similar to HTTP. If folding is not present the search for

base64 encoded data will end when we see a carriage return or line feed or both without a following space or

tab.

This option needs to be used in conjunction with base64 data for any other payload detecting rule options

to work on base64 decoded buffer.

Examples

alert tcp $EXTERNAL_NET any -> $HOME_NET any \

(msg:"Base64 Encoded Data"; base64_decode; base64_data; \

content:"foo bar"; within:20;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \

(msg:"Authorization NTLM"; content:"Authorization: NTLM";

207

base64_decode:relative; base64_data; content:"NTLMSSP";)

alert tcp any any -> any any (msg:"Authorization NTLM"; \

content:"Authorization:"; http_header; \

base64_decode:bytes 12, offset 6, relative; base64_data; \

content:"NTLMSSP"; within:8;)

3.5.30 base64 data

This option is similar to the rule option file data and is used to set the cursor used for detection to the beginning of

the base64 decoded buffer if present.

This option does not take any arguments. The rule option base64 decode needs to be specified before the base64 data

option.

Format

base64_data;

This option matches if there is base64 decoded buffer.

△!
NOTE

Fast pattern content matches are not allowed with this buffer.

Example

alert tcp any any -> any any (msg:"Authorization NTLM"; \

content:"Authorization:"; http_header; \

base64_decode:bytes 12, offset 6, relative; base64_data; \

content:"NTLMSSP"; within:8;)

3.5.31 byte test

Test a byte field against a specific value (with operator). Capable of testing binary values or converting representative

byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read Section 3.9.5.

Format

byte_test:<bytes to convert>, [!]<operator>, <value>, <offset> \

[, relative][, <endian>][, string, <number type>][, dce] \

[, bitmask <bitmask_value>];

bytes = 1 - 10

operator = ’<’ | ’=’ | ’>’ | ’<=’ | ’>=’ | ’&’ | ’ˆ’

value = 0 - 4294967295

offset = -65535 to 65535

bitmask_value = 1 to 4 byte hexadecimal value

208

Option Description

bytes to convert Number of bytes to pick up from the packet. The allowed values are 1 to 10 when

used without dce. If used with dce allowed values are 1, 2 and 4.

operator Operation to perform to test the value:

• < - less than

• > - greater than

• <= - less than or equal

• >= - greater than or equal

• = - equal

• & - bitwise AND

• ˆ - bitwise OR

value Value to test the converted value against

offset Number of bytes into the payload to start processing

relative Use an offset relative to last pattern match

endian Endian type of the number being read:

• big - Process data as big endian (default)

• little - Process data as little endian

string Data is stored in string format in packet

number type Type of number being read:

• hex - Converted string data is represented in hexadecimal

• dec - Converted string data is represented in decimal

• oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be con-

verted. See section 2.2.16 for a description and examples (2.2.16 for quick refer-

ence).

bitmask Applies the AND operator on the bytes converted. The result will be right-shifted

by the number of bits equal to the number of trailing zeros in the mask.

Any of the operators can also include ! to check if the operator is not true. If ! is specified without an operator, then

the operator is set to =.

△!
NOTE

Snort uses the C operators for each of these operators. If the & operator is used, then it would be the same as

using if (data & value) { do something();}

Examples

alert udp $EXTERNAL_NET any -> $HOME_NET any \

(msg:"AMD procedure 7 plog overflow"; \

content:"|00 04 93 F3|"; \

content:"|00 00 00 07|"; distance:4; within:4; \

byte_test:4, >, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \

209

(msg:"AMD procedure 7 plog overflow"; \

content:"|00 04 93 F3|"; \

content:"|00 00 00 07|"; distance:4; within:4; \

byte_test:4, >, 1000, 20, relative;)

alert udp any any -> any 1234 \

(byte_test:4, =, 1234, 0, string, dec; \

msg:"got 1234!";)

alert udp any any -> any 1235 \

(byte_test:3, =, 123, 0, string, dec; \

msg:"got 123!";)

alert udp any any -> any 1236 \

(byte_test:2, =, 12, 0, string, dec; \

msg:"got 12!";)

alert udp any any -> any 1237 \

(byte_test:10, =, 1234567890, 0, string, dec; \

msg:"got 1234567890!";)

alert udp any any -> any 1238 \

(byte_test:8, =, 0xdeadbeef, 0, string, hex; \

msg:"got DEADBEEF!";)

alert tcp any any -> any any \

(byte_test:2, =, 568, 0, bitmask 0x3FF0; \

msg:"got 568 after applying bitmask 0x3FF0 on 2 bytes extracted";)

3.5.32 byte jump

The byte jump keyword allows rules to be written for length encoded protocols trivially. By having an option that

reads the length of a portion of data, then skips that far forward in the packet, rules can be written that skip over

specific portions of length-encoded protocols and perform detection in very specific locations.

The byte jump option does this by reading some number of bytes, convert them to their numeric representation, move

that many bytes forward and set a pointer for later detection. This pointer is known as the detect offset end pointer, or

doe ptr.

For a more detailed explanation, please read Section 3.9.5.

Format

byte_jump:<bytes_to_convert>, <offset> [, relative][, multiplier <mult_value>] \

[, <endian>][, string, <number_type>][, align][, from_beginning][, from_end] \

[, post_offset <adjustment value>][, dce][, bitmask <bitmask_value>];

bytes = 1 - 10

offset = -65535 to 65535

mult_value = 0 - 65535

post_offset = -65535 to 65535

bitmask_value = 1 to 4 bytes hexadecimal value

210

Option Description

bytes to convert Number of bytes to pick up from the packet. The allowed values are 1 to 10 when

used without dce. If used with dce allowed values are 1, 2 and 4.

If used with from end argument, bytes to convert can be 0. If bytes to convert is

0, the extracted value is 0.

offset Number of bytes into the payload to start processing

relative Use an offset relative to last pattern match

multiplier <value> Multiply the number of calculated bytes by <value> and skip forward that num-

ber of bytes.

big Process data as big endian (default)

little Process data as little endian

string Data is stored in string format in packet

hex Converted string data is represented in hexadecimal

dec Converted string data is represented in decimal

oct Converted string data is represented in octal

align Round the number of converted bytes up to the next 32-bit boundary

from beginning Skip forward from the beginning of the packet payload instead of from the current

position in the packet.

from end The jump will originate from the end of payload

post offset <value> Skip forward or backwards (positive of negative value) by <value> number of

bytes after the other jump options have been applied.

dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be con-

verted. See section 2.2.16 for a description and examples (2.2.16 for quick refer-

ence).

bitmask Applies the AND operator on the bytes to convert argument. The result will

be right-shifted by the number of bits equal to the number of trailing zeros in the

mask.

Example

alert udp any any -> any 32770:34000 (content:"|00 01 86 B8|"; \

content:"|00 00 00 01|"; distance:4; within:4; \

byte_jump:4, 12, relative, align; \

byte_test:4, >, 900, 20, relative; \

msg:"statd format string buffer overflow";)

alert tcp any any -> any any (content:"Begin"; \

byte_jump:0, 0, from_end, post_offset -6; \

content:"end.."; distance:0; within:5; \

msg:"Content match from end of the payload";)

alert tcp any any -> any any (content:"catalog"; \

byte_jump:2, 1, relative, post_offset 2, bitmask 0x03f0; \

byte_test:2, =, 968, 0, relative; \

msg:"Bitmask applied on the 2 bytes extracted for byte_jump";)

alert tcp any any -> any any (content:"catalog"; \

byte_jump:1, 2, from_end, post_offset -5, bitmask 0x3c; \

byte_test:1, =, 106, 0, relative; \

msg:"Byte jump calculated from end of payload after bitmask applied";)

3.5.33 byte extract

The byte extract keyword is another useful option for writing rules against length-encoded protocols. It reads in

some number of bytes from the packet payload and saves it to a variable. These variables can be referenced later in

211

the rule, instead of using hard-coded values.

△!
NOTE

Only two byte extract variables may be created per rule. They can be re-used in the same rule any number

of times.

Format

byte_extract:<bytes_to_extract>, <offset>, <name> [, relative] \

[, multiplier <multiplier value>][, <endian>][, string][, hex][, dec][, oct] \

[, align <align value>][, dce][, bitmask <bitmask>];

bytes_to_extract = 1 - 10

operator = ’<’ | ’=’ | ’>’ | ’<=’ | ’>=’ | ’&’ | ’ˆ’

value = 0 - 4294967295

offset = -65535 to 65535

bitmask_value = 1 to 4 byte hexadecimal value

Option Description

bytes to extract Number of bytes to pick up from the packet

offset Number of bytes into the payload to start processing

name Name of the variable. This will be used to reference the variable in other rule

options.

relative Use an offset relative to last pattern match

multiplier <value> Multiply the bytes read from the packet by <value> and save that number into

the variable.

big Process data as big endian (default)

little Process data as little endian

dce Use the DCE/RPC 2 preprocessor to determine the byte-ordering. The DCE/RPC

2 preprocessor must be enabled for this option to work.

string Data is stored in string format in packet

hex Converted string data is represented in hexadecimal

dec Converted string data is represented in decimal

oct Converted string data is represented in octal

align <value> Round the number of converted bytes up to the next <value>-byte boundary.

<value> may be 2 or 4.

bitmask Applies the AND operator on the value of bytes to extract argument. The

result will be right-shifted by the number of bits equal to the number of trailing

zeros in the mask.

Other options which use byte extract variables

A byte extract rule option detects nothing by itself. Its use is in extracting packet data for use in other rule options.

Here is a list of places where byte extract variables can be used:

Rule Option Arguments that Take Variables

content/uricontent offset, depth, distance, within

byte test offset, value

byte jump offset

isdataat offset

Examples

This example uses two variables to:

212

• Read the offset of a string from a byte at offset 0.

• Read the depth of a string from a byte at offset 1.

• Use these values to constrain a pattern match to a smaller area.

alert tcp any any -> any any (byte_extract:1, 0, str_offset; \

byte_extract:1, 1, str_depth; \

content:"bad stuff"; offset:str_offset; depth:str_depth; \

msg:"Bad Stuff detected within field";)

alert tcp any any -> any any (content:"|04 63 34 35|"; offset:4; depth:4; \

byte_extract: 2, 0, var_match, relative, bitmask 0x03ff; \

byte_test: 2, =, var_match, 2, relative; \

msg:"Byte test value matches bitmask applied on bytes extracted";)

3.5.34 byte math

Perform a mathematical operation on an extracted value and a specified value or existing variable, and store the

outcome in a new resulting variable. These resulting variables can be referenced later in the rule, instead of using

hard-coded values.

Format

byte_math:bytes <bytes_to_extract>, offset <offset_value>, oper <operator>,

rvalue <r_value>, result <result_variable> [, relative]

[, endian <endian>] [, string <number type>][, dce]

[, bitmask <bitmask_value>];

bytes_to_extract = 1 - 10

operator = ’+’ | ’-’ | ’*’ | ’/’ | ’<<’ | ’>>’

r_value = 0 - 4294967295 | byte extract variable

offset_value = -65535 to 65535

bitmask_value = 1 to 4 byte hexadecimal value

result_variable = Result Variable name

213

Option Description

bytes to extract Number of bytes to pick up from the packet. The allowed values are 1 to 10 when

used without dce. If used with dce allowed values are 1, 2 and 4. If used with

<< or >> operator, allowed values are 1 to 4.

oper Mathematical Operation to perform on the extracted value Operations allowed: +,

-, *, /, <<, >>

rvalue Value to use mathematical operation against

offset Number of bytes into the payload to start processing

relative Use an offset relative to last pattern match

endian Endian type of the number being read:

• big - Process data as big endian (default)

• little - Process data as little endian

string Data is stored in string format in packet

number type Type of number being read:

• hex - Converted string data is represented in hexadecimal

• dec - Converted string data is represented in decimal

• oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte order of the value to be con-

verted. See section 2.2.16 for a description and examples (2.2.16 for quick refer-

ence).

bitmask Applies the AND operator on the bytes extracted. The result will be right-shifted

by the number of bits equal to the number of trailing zeros in the mask.

Other rule options which use byte math result variable

Rule Option Arguments that take result variable

content offset, depth, distance, within

byte test offset, value

byte jump offset

isdataat offset

Examples

alert udp $EXTERNAL_NET any -> $HOME_NET any \

(msg:"Perform Arithmetic Operation on the extracted bytes"; \

content:"|00 04 93 F3|"; \

content:"|00 00 00 07|"; distance:4; within:4; \

byte_math:bytes 4, offset 0, oper +, rvalue 248, result var, relative; \

byte_test:4, >, var, 2, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \

(msg:"Bitwise shift operator"; \

content:"|00 00 00 07|"; distance:4; within:4; \

byte_extract: 1, 0, extracted_val, relative; \

byte_math: bytes 1, offset 2, oper >>, rvalue extracted_val, result var, relative; \

byte_test:2, =, var, 0, relative;)

alert udp any any -> any 1234 \

(content: "Packets start"; \

byte_math: bytes 2, offset 0, oper -, rvalue 100, result var, relative, bitmask 0x7FF0; \

214

content: "Packets end"; distance: 2; within var; \

msg:"Content match with bitmask applied to the bytes extracted";)

alert udp any any -> any 1235 \

(byte_extract: 4, 3, extracted_val, relative; \

byte_math: bytes 5, offset 0, oper +, rvalue extracted_val, result var, string hex; \

byte_test:5, =, var, 4, string, hex; \

msg:"String operator used with math rule option";)

3.5.35 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT bounce attempt"; \

flow:to_server,established; content:"PORT"; nocase; ftpbounce; pcre:"/ˆPORT/smi";\

classtype:misc-attack; sid:3441; rev:1;)

3.5.36 asn1

The ASN.1 detection plugin decodes a packet or a portion of a packet, and looks for various malicious encodings.

Multiple options can be used in an ’asn1’ option and the implied logic is boolean OR. So if any of the arguments

evaluate as true, the whole option evaluates as true.

The ASN.1 options provide programmatic detection capabilities as well as some more dynamic type detection. If an

option has an argument, the option and the argument are separated by a space or a comma. The preferred usage is to

use a space between option and argument.

Format

asn1:[bitstring_overflow][, double_overflow][, oversize_length <value>][, absolute_offset <value>|relative_of

215

Option Description

bitstring overflow Detects invalid bitstring encodings that are known to be remotely exploitable.

double overflow Detects a double ASCII encoding that is larger than a standard buffer. This is

known to be an exploitable function in Microsoft, but it is unknown at this time

which services may be exploitable.

oversize length <value> Compares ASN.1 type lengths with the supplied argument. The syntax looks like,

“oversize length 500”. This means that if an ASN.1 type is greater than 500, then

this keyword is evaluated as true. This keyword must have one argument which

specifies the length to compare against.

absolute offset <value> This is the absolute offset from the beginning of the packet. For example,

if you wanted to decode snmp packets, you would say “absolute offset 0”.

absolute offset has one argument, the offset value. Offset may be positive

or negative.

relative offset <value> This is the relative offset from the last content match, pcre or byte jump.

relative offset has one argument, the offset number. So if you wanted to start

decoding an ASN.1 sequence right after the content “foo”, you would specify

’content:"foo"; asn1:bitstring_overflow, relative_offset 0’. Off-

set values may be positive or negative.

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \

asn1:oversize_length 10000, absolute_offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content:"foo"; \

asn1:bitstring_overflow, relative_offset 0;)

3.5.37 cvs

The CVS detection plugin aids in the detection of: Bugtraq-10384, CVE-2004-0396: ”Malformed Entry Modified and

Unchanged flag insertion”. Default CVS server ports are 2401 and 514 and are included in the default ports for stream

reassembly.

△!
NOTE

This plugin cannot do detection over encrypted sessions, e.g. SSH (usually port 22).

Format

cvs:<option>;

Option Description

invalid-entry Looks for an invalid Entry string, which is a way of causing a heap overflow (see

CVE-2004-0396) and bad pointer dereference in versions of CVS 1.11.15 and

before.

Examples

alert tcp any any -> any 2401 (msg:"CVS Invalid-entry"; \

flow:to_server,established; cvs:invalid-entry;)

216

3.5.38 dce iface

See the DCE/RPC 2 Preprocessor section 2.2.16 for a description and examples of using this rule option.

3.5.39 dce opnum

See the DCE/RPC 2 Preprocessor section 2.2.16 for a description and examples of using this rule option.

3.5.40 dce stub data

See the DCE/RPC 2 Preprocessor section 2.2.16 for a description and examples of using this rule option.

3.5.41 sip method

See the SIP Preprocessor section 2.2.19 for a description and examples of using this rule option.

3.5.42 sip stat code

See the SIP Preprocessor section 2.2.19 for a description and examples of using this rule option.

3.5.43 sip header

See the SIP Preprocessor section 2.2.19 for a description and examples of using this rule option.

3.5.44 sip body

See the SIP Preprocessor section 2.2.19 for a description and examples of using this rule option.

3.5.45 gtp type

See the GTP Preprocessor section 2.2.21 for a description and examples of using this rule option.

3.5.46 gtp info

See the GTP Preprocessor section 2.2.21 for a description and examples of using this rule option.

3.5.47 gtp version

See the GTP Preprocessor section 2.2.21 for a description and examples of using this rule option.

3.5.48 ssl version

See the SSL/TLS Preprocessor section 2.2.14 for a description and examples of using this rule option.

3.5.49 ssl state

See the SSL/TLS Preprocessor section 2.2.14 for a description and examples of using this rule option.

217

3.5.50 Payload Detection Quick Reference

Table 3.10: Payload detection rule option keywords

Keyword Description

content The content keyword allows the user to set rules that search for specific content in

the packet payload and trigger response based on that data.

rawbytes The rawbytes keyword allows rules to look at the raw packet data, ignoring any

decoding that was done by preprocessors.

depth The depth keyword allows the rule writer to specify how far into a packet Snort

should search for the specified pattern.

offset The offset keyword allows the rule writer to specify where to start searching for a

pattern within a packet.

distance The distance keyword allows the rule writer to specify how far into a packet Snort

should ignore before starting to search for the specified pattern relative to the end

of the previous pattern match.

within The within keyword is a content modifier that makes sure that at most N bytes are

between pattern matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language searches the normalized request

URI field.

isdataat The isdataat keyword verifies that the payload has data at a specified location.

pcre The pcre keyword allows rules to be written using perl compatible regular expres-

sions.

byte test The byte test keyword tests a byte field against a specific value (with operator).

byte jump The byte jump keyword allows rules to read the length of a portion of data, then

skip that far forward in the packet.

ftpbounce The ftpbounce keyword detects FTP bounce attacks.

asn1 The asn1 detection plugin decodes a packet or a portion of a packet, and looks for

various malicious encodings.

cvs The cvs keyword detects invalid entry strings.

dce iface See the DCE/RPC 2 Preprocessor section 2.2.16.

dce opnum See the DCE/RPC 2 Preprocessor section 2.2.16.

dce stub data See the DCE/RPC 2 Preprocessor section 2.2.16.

sip method See the SIP Preprocessor section 2.2.19.

sip stat code See the SIP Preprocessor section 2.2.19.

sip header See the SIP Preprocessor section 2.2.19.

sip body See the SIP Preprocessor section 2.2.19.

gtp type See the GTP Preprocessor section 2.2.21.

gtp info See the GTP Preprocessor section 2.2.21.

gtp version See the GTP Preprocessor section 2.2.21.

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragment offset field against a decimal value. To catch all the first

fragments of an IP session, you could use the fragbits keyword and look for the More fragments option in conjunction

with a fragoffset of 0.

218

Format

fragoffset:[!|<|>]<number>;

Example

alert ip any any -> any any \

(msg:"First Fragment"; fragbits:M; fragoffset:0;)

3.6.2 ttl

The ttl keyword is used to check the IP time-to-live value. This option keyword was intended for use in the detection

of traceroute attempts. This keyword takes numbers from 0 to 255.

Format

ttl:[<, >, =, <=, >=]<number>;

ttl:[<number>]-[<number>];

Example

This example checks for a time-to-live value that is less than 3.

ttl:<3;

This example checks for a time-to-live value that between 3 and 5.

ttl:3-5;

This example checks for a time-to-live value that between 0 and 5.

ttl:-5;

This example checks for a time-to-live value that between 5 and 255.

ttl:5-;

Few other examples are as follows:

ttl:<=5;

ttl:>=5;

ttl:=5;

The following examples are NOT allowed by ttl keyword:

ttl:=>5;

ttl:=<5;

ttl:5-3;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specific value.

219

Format

tos:[!]<number>;

Example

This example looks for a tos value that is not 4

tos:!4;

3.6.4 id

The id keyword is used to check the IP ID field for a specific value. Some tools (exploits, scanners and other odd

programs) set this field specifically for various purposes, for example, the value 31337 is very popular with some

hackers.

Format

id:<number>;

Example

This example looks for the IP ID of 31337.

id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option is present.

The following options may be checked:

rr - Record Route

eol - End of list

nop - No Op

ts - Time Stamp

sec - IP Security

esec - IP Extended Security

lsrr - Loose Source Routing

lsrre - Loose Source Routing (For MS99-038 and CVE-1999-0909)

ssrr - Strict Source Routing

satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict and loose source routing which aren’t used in any widespread

internet applications.

220

Format

ipopts:<rr|eol|nop|ts|sec|esec|lsrr|lsrre|ssrr|satid|any>;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

The fragbits keyword is used to check if fragmentation and reserved bits are set in the IP header.

The following bits may be checked:

M - More Fragments

D - Don’t Fragment

R - Reserved Bit

The following modifiers can be set to change the match criteria:

+ match on the specified bits, plus any others

* match if any of the specified bits are set

! match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>;

Example

This example checks if the More Fragments bit and the Do not Fragment bit are set.

fragbits:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size. This may be used to check for abnormally sized packets

that might cause buffer overflows.

Format

dsize:min<>max;

dsize:[<|>]<number>;

221

Example

This example looks for a dsize that is between 300 and 400 bytes (inclusive).

dsize:300<>400;

Warning

Note that segmentation makes dsize less reliable for TCP based protocols such as HTTP. Furthermore, dsize will fail

on stream rebuilt packets, regardless of the size of the payload, unless protocol aware flushing (PAF) marks this packet

as the start of a message.

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits are present.

The following bits may be checked:

F - FIN - Finish (LSB in TCP Flags byte)

S - SYN - Synchronize sequence numbers

R - RST - Reset

P - PSH - Push

A - ACK - Acknowledgment

U - URG - Urgent

C - CWR - Congestion Window Reduced (MSB in TCP Flags byte)

E - ECE - ECN-Echo (If SYN, then ECN capable. Else, CE flag in IP header is set)

0 - No TCP Flags Set

The following modifiers can be set to change the match criteria:

+ - match on the specified bits, plus any others

* - match if any of the specified bits are set

! - match if the specified bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with CWR and ECE

set, an option mask may be specified by preceding the mask with a comma. A rule could check for a flags value of

S,CE if one wishes to find packets with just the syn bit, regardless of the values of the reserved bits.

Format

flags:[!|*|+]<FSRPAUCE0>[,<FSRPAUCE>];

222

Example

This example checks if just the SYN and the FIN bits are set, ignoring CWR (reserved bit 1) and ECN (reserved bit

2).

alert tcp any any -> any any (flags:SF,CE;)

△!
NOTE

The reserved bits ’1’ and ’2’ have been replaced with ’C’ and ’E’, respectively, to match RFC 3168, ”The

Addition of Explicit Congestion Notification (ECN) to IP”. The old values of ’1’ and ’2’ are still valid for

the flag keyword, but are now deprecated.

3.6.9 flow

The flow keyword is used in conjunction with session tracking (see Section 2.2.2). It allows rules to only apply to

certain directions of the traffic flow.

This allows rules to only apply to clients or servers. This allows packets related to $HOME NET clients viewing web

pages to be distinguished from servers running in the $HOME NET.

The established keyword will replace the flags:+A used in many places to show established TCP connections.

Options

Option Description

to client Trigger on server responses from A to B

to server Trigger on client requests from A to B

from client Trigger on client requests from A to B

from server Trigger on server responses from A to B

established Trigger only on established TCP connections

not established Trigger only when no TCP connection is established

stateless Trigger regardless of the state of the stream processor (useful for packets that are

designed to cause machines to crash)

no stream Do not trigger on rebuilt stream packets (useful for dsize and stream5)

only stream Only trigger on rebuilt stream packets

no frag Do not trigger on rebuilt frag packets

only frag Only trigger on rebuilt frag packets

Format

flow:[(established|not_established|stateless)]

[,(to_client|to_server|from_client|from_server)]

[,(no_stream|only_stream)]

[,(no_frag|only_frag)];

Examples

alert tcp !$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming detected"; \

flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg:"Port 0 TCP traffic"; \

flow:stateless;)

223

3.6.10 flowbits

The flowbits keyword is used in conjunction with conversation tracking from the Session preprocessor (see Section2.2.2).

It allows rules to track states during a transport protocol session. The flowbits option is most useful for TCP sessions,

as it allows rules to generically track the state of an application protocol.

There are several keywords associated with flowbits. Most of the options need a user-defined name for the specific

state that is being checked. Some keyword uses group name. When no group name is specified the flowbits will belong

to a default group. A particular flowbit can belong to more than one group. Flowbit name and group name should be

limited to any alphanumeric string including periods, dashes, and underscores.

General Format

flowbits:[set|setx|unset|toggle|isset|isnotset|noalert|reset][, <bits/bats>][, <GROUP_NAME>];

bits ::= bit[|bits]

bats ::= bit[&bats]

Option Description

set Sets the specified states for the current flow and assign them to a group when a

GROUP NAME is specified.

setx Sets the specified states for the current flow and clear other states in the group

unset Unsets the specified states for the current flow.

toggle For every state specified, sets the specified state if the state is unset and unsets it

if the state is set.

isset Checks if the specified states are set.

isnotset Checks if the specified states are not set.

noalert Cause the rule to not generate an alert, regardless of the rest of the detection

options.

reset Reset all states on a given flow.

set

This keyword sets bits to group for a particular flow. When no group specified, set the default group. This keyword

always returns true.

Syntax:

flowbits:set,bats[,group]

Usage:

flowbits:set,bit1,doc;

flowbits:set,bit2&bit3,doc;

First rule sets bit1 in doc group, second rule sets bit2 and bit3 in doc group.

So doc group has bit 1, bit2 and bit3 set

setx

This keyword sets bits to group exclusively. This clears other bits in group. Group must present.This keyword always

returns true.

Syntax:

flowbits:setx,bats,group

Usage:

flowbits: setx, bit1, doc

flowbits: setx, bit2&bit3, doc

First rule sets bit1 in doc group, second rule sets bit2 and bit3 in doc group.

So doc group has bit2 and bit3 set, because bit1 is cleared by rule 2.

224

unset

This keyword clears bits specified for a particular flow or clears all bits in the group (Group must present). This

keyword always returns true.

Syntax:

flowbits:unset,bats

flowbits:unset,all,group

Usage:

flowbits: unset, bit1

Clear bit1.

flowbits: unset, bit1&bit2

Clear bit1 and bit2

flowbits: unset, all, doc

This clears all bits in the doc group.

toggle

If flowbit is set, unset it. If it is unset, set it. Toggle every bit specified or toggle all the bits in group (Group must be

present). This keyword always returns true.

Syntax:

flowbits:toggle,bats

flowbits:toggle,all,group

Usage:

flowbits: toggle, bit1&bit2

If bit1 is 0 and bit2 is 1 before, after this rule, bit1 is 1 and bit2 is 0.

flowbits:toggle,all,doc

Toggle all the bits in group doc as described above.

isset

This keyword checks a bit or several bits to see if it is set. It returns true or false based on the following syntax.

Syntax:

flowbits:isset, bits => Check whether any bit is set

flowbits:isset, bats => Check whether all bits are set

flowbits:isset, any, group => Check whether any bit in the group is set.

flowbits:isset, all, group => Check whether all bits in the group are set.

Usage

flowbits:isset, bit1|bit2 => If either bit1 or bit2 is set, return true

flowbits:isset, bit1&bit2 => If both bit1 and bit2 are set, return true, otherwise false

flowbits:isset, any, doc => If any bit in group doc is set, return true

flowbits:isset, all, doc => If all the bits in doc group are set, return true

isnotset

This keyword is the reverse of isset. It returns true if isset is false, it returns false if isset is true. Isnotset works on the

final result, not on individual bits.

225

Syntax:

flowbits:isnotset, bits => Check whether not any bit is set

flowbits:isnotset, bats => Check whether not all bits are set

flowbits:isnotset, any, group => Check whether not bit in the group is set.

flowbits:isnotset, all, group => Check whether not all bits in the group are set.

Usage

flowbits:isnotset, bit1|bit2 => If either bit1 or bit2 is set, return true

flowbits:isnotset, bit1&bit2 => If both bit1 and bit2 are set, return true, otherwise false

flowbits:isnotset, any, doc => If any bit in group doc is set, return true

flowbits:isnotset, all, doc => If all the bits in doc group are set, return true

noalert

This keyword always returns false. It allows users to write rules that set, unset, and toggle bit without generating an

alert. This is most useful for writing flowbit rules that set bit on normal traffic and significantly reduces unwanted

alerts. There is no bit specified with this keyword.

flowbits:noalert;

reset

This keyword resets all of the states on a given flow if no group specified, otherwise, reset all the bits in a group. This

always returns true. There is no bit specified with this keyword.

Syntax:

flowbits:reset[,group]

Usage:

flowbits:reset => reset all the bits in the flow

flowbits: reset, doc => reset all the bits in the doc group

Examples

alert tcp any 143 -> any any (msg:"IMAP login";

content:"OK LOGIN"; flowbits:set,logged_in;

flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST";

flowbits:isset,logged_in;)

3.6.11 seq

The seq keyword is used to check for a specific TCP sequence number.

Format

seq:<number>;

226

Example

This example looks for a TCP sequence number of 0.

seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowledge number.

Format

ack:<number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

3.6.13 window

The window keyword is used to check for a specific TCP window size.

Format

window:[!]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

3.6.14 itype

The itype keyword is used to check for a specific ICMP type value.

Format

itype:min<>max;

itype:[<|>]<number>;

Example

This example looks for an ICMP type greater than 30.

itype:>30;

227

3.6.15 icode

The icode keyword is used to check for a specific ICMP code value.

Format

icode:min<>max;

icode:[<|>]<number>;

The <> operator in the first format checks for an ICMP code within a specified range (exclusive). That is, strictly

greater than the min value and strictly less than the max value. Note that the min value can a -1 allowing an ICMP

code of zero to be included in the range.

Numerical values are validated with respect to permissible ICMP code values between 0 and 255 and other criteria.

icode:min<>max

-1 <= min <= 254

1 <= max <= 256

(max - min) > 1

icode:number

0 <= number <= 255

icode:<number

1 <= number <= 256

icode:>number

0 <= number <= 254

Examples

This example looks for an ICMP code greater than 30.

icode:>30;

This example looks for an ICMP code greater than zero and less than 30.

icode:-1<>30;

3.6.16 icmp id

The icmp id keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular

plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

228

3.6.17 icmp seq

The icmp seq keyword is used to check for a specific ICMP sequence value.

This is useful because some covert channel programs use static ICMP fields when they communicate. This particular

plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_seq:<number>;

Example

This example looks for an ICMP Sequence of 0.

icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, version, and procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbers by using ’*’;

Format

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

Example

The following example looks for an RPC portmap GETPORT request.

alert tcp any any -> any 111 (rpc:100000, *, 3;);

Warning

Because of the fast pattern matching engine, the RPC keyword is slower than looking for the RPC values by using

normal content matching.

3.6.19 ip proto

The ip proto keyword allows checks against the IP protocol header. For a list of protocols that may be specified by

name, see /etc/protocols.

Format

ip_proto:[!|>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

229

3.6.20 sameip

The sameip keyword allows rules to check if the source ip is the same as the destination IP.

Format

sameip;

Example

This example looks for any traffic where the Source IP and the Destination IP is the same.

alert ip any any -> any any (sameip;)

3.6.21 stream reassemble

The stream reassemble keyword allows a rule to enable or disable TCP stream reassembly on matching traffic.

△!
NOTE

The stream reassemble option is only available when the Stream preprocessor is enabled.

Format

stream_reassemble:<enable|disable>, <server|client|both>[, noalert][, fastpath];

• The optional noalert parameter causes the rule to not generate an alert when it matches.

• The optional fastpath parameter causes Snort to ignore the rest of the connection.

Example

For example, to disable TCP reassembly for client traffic when we see a HTTP 200 Ok Response message, use:

alert tcp any 80 -> any any (flow:to_client, established; content:"200 OK";

stream_reassemble:disable,client,noalert;)

3.6.22 stream size

The stream size keyword allows a rule to match traffic according to the number of bytes observed, as determined by

the TCP sequence numbers.

△!
NOTE

The stream size option is only available when the Stream preprocessor is enabled.

230

Format

stream_size:<server|client|both|either>, <operator>, <number>;

Where the operator is one of the following:

• < - less than

• > - greater than

• = - equal

• != - not equal

• <= - less than or equal

• >= - greater than or equal

Example

For example, to look for a session that is less that 6 bytes from the client side, use:

alert tcp any any -> any any (stream_size:client,<,6;)

3.6.23 Non-Payload Detection Quick Reference

Table 3.11: Non-payload detection rule option keywords

Keyword Description

fragoffset The fragoffset keyword allows one to compare the IP fragment offset field against

a decimal value.

ttl The ttl keyword is used to check the IP time-to-live value.

tos The tos keyword is used to check the IP TOS field for a specific value.

id The id keyword is used to check the IP ID field for a specific value.

ipopts The ipopts keyword is used to check if a specific IP option is present.

fragbits The fragbits keyword is used to check if fragmentation and reserved bits are set in

the IP header.

dsize The dsize keyword is used to test the packet payload size.

flags The flags keyword is used to check if specific TCP flag bits are present.

flow The flow keyword allows rules to only apply to certain directions of the traffic

flow.

flowbits The flowbits keyword allows rules to track states during a transport protocol ses-

sion.

seq The seq keyword is used to check for a specific TCP sequence number.

ack The ack keyword is used to check for a specific TCP acknowledge number.

window The window keyword is used to check for a specific TCP window size.

itype The itype keyword is used to check for a specific ICMP type value.

icode The icode keyword is used to check for a specific ICMP code value.

icmp id The icmp id keyword is used to check for a specific ICMP ID value.

icmp seq The icmp seq keyword is used to check for a specific ICMP sequence value.

rpc The rpc keyword is used to check for a RPC application, version, and procedure

numbers in SUNRPC CALL requests.

ip proto The ip proto keyword allows checks against the IP protocol header.

sameip The sameip keyword allows rules to check if the source ip is the same as the

destination IP.

231

3.7 Post-Detection Rule Options

3.7.1 logto

The logto keyword tells Snort to log all packets that trigger this rule to a special output log file. This is especially

handy for combining data from things like NMAP activity, HTTP CGI scans, etc. It should be noted that this option

does not work when Snort is in binary logging mode.

Format

logto:"filename";

3.7.2 session

The session keyword is built to extract user data from TCP Sessions. There are many cases where seeing what users

are typing in telnet, rlogin, ftp, or even web sessions is very useful.

There are three available argument keywords for the session rule option: printable, binary, or all.

The printable keyword only prints out data that the user would normally see or be able to type. The binary keyword

prints out data in a binary format. The all keyword substitutes non-printable characters with their hexadecimal

equivalents.

Format

session:[printable|binary|all];

Example

The following example logs all printable strings in a telnet packet.

log tcp any any <> any 23 (session:printable;)

Given an FTP data session on port 12345, this example logs the payload bytes in binary form.

log tcp any any <> any 12345 (metadata:service ftp-data; session:binary;)

Warnings

Using the session keyword can slow Snort down considerably, so it should not be used in heavy load situations. The

session keyword is best suited for post-processing binary (pcap) log files.

The binary keyword does not log any protocol headers below the application layer, and Stream reassembly will cause

duplicate data when the reassembled packets are logged.

3.7.3 resp

The resp keyword enables an active response that kills the offending session. Resp can be used in both passive or

inline modes. See 2.11.3 for details.

232

3.7.4 react

The react keyword enables an active response that includes sending a web page or other content to the client and then

closing the connection. React can be used in both passive and inline modes. See 2.11.4 for details.

3.7.5 tag

The tag keyword allow rules to log more than just the single packet that triggered the rule. Once a rule is triggered,

additional traffic involving the source and/or destination host is tagged. Tagged traffic is logged to allow analysis of

response codes and post-attack traffic. tagged alerts will be sent to the same output plugins as the original alert, but it

is the responsibility of the output plugin to properly handle these special alerts.

Format

tag:host, <count>, <metric>, <direction>;

tag:session[, <count>, <metric>][, exclusive];

type

• session - Log packets in the session that set off the rule

• host - Log packets from the host that caused the tag to activate (uses [direction] modifier)

count

• <integer> - Count is specified as a number of units. Units are specified in the <metric> field.

metric

• packets - Tag the host/session for <count> packets

• seconds - Tag the host/session for <count> seconds

• bytes - Tag the host/session for <count> bytes

other • src - Tag packets containing the source IP address of the packet that generated the initial event. Only

relevant if host type is used.

• dst - Tag packets containing the destination IP address of the packet that generated the initial event. Only

relevant if host type is used.

• exclusive - Tag packets only in the first matching session. Only relevant if session type is used.

Note that neither subsequent alerts nor event filters will prevent a tagged packet from being logged. Subsequent tagged

alerts will cause the limit to reset.

alert tcp any any <> 10.1.1.1 any \

(flowbits:isnotset,tagged; content:"foobar"; nocase; \

flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses a metric other than packets, a tagged packet limit will

be used to limit the number of tagged packets regardless of whether the seconds or bytes count has been reached.

The default tagged packet limit value is 256 and can be modified by using a config option in your snort.conf file

(see Section 2.1.3 on how to use the tagged packet limit config option). You can disable this packet limit for

a particular rule by adding a packets metric to your tag option and setting its count to 0 (This can be done on a

global scale by setting the tagged packet limit option in snort.conf to 0). Doing this will ensure that packets are

tagged for the full amount of seconds or bytes and will not be cut off by the tagged packet limit. (Note that the

tagged packet limit was introduced to avoid DoS situations on high bandwidth sensors for tag rules with a high

seconds or bytes counts.)

alert tcp 10.1.1.4 any -> 10.1.1.1 any \

(content:"TAGMYPACKETS"; tag:host,0,packets,600,seconds,src;)

233

Example

This example logs the first 10 seconds or the tagged packet limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:S,CE; tag:session,10,seconds;)

While at least one count and metric is required for tag:host, tag:session with exclusive without any metrics can be used

to get a full session like this:

pass tcp any any -> 192.168.1.1 80 (flags:S; tag:session,exclusive;)

3.7.6 replace

The replace keyword is a feature available in inline mode which will cause Snort to replace the prior matching

content with the given string. Both the new string and the content it is to replace must have the same length. You can

have multiple replacements within a rule, one per content.

replace:"<string>";

3.7.7 detection filter

detection filter defines a rate which must be exceeded by a source or destination host before a rule can generate an

event. detection filter has the following format:

detection_filter: \

track <by_src|by_dst>, \

count <c>, seconds <s>;

Option Description

track

by src|by dst

Rate is tracked either by source IP address or destination IP address. This means

count is maintained for each unique source IP address or each unique destination

IP address.

count c The maximum number of rule matches in s seconds allowed before the detection

filter limit to be exceeded. C must be nonzero.

seconds s Time period over which count is accrued. The value must be nonzero.

Snort evaluates a detection filter as the last step of the detection phase, after evaluating all other rule options

(regardless of the position of the filter within the rule source). At most one detection filter is permitted per rule.

Example - this rule will fire on every failed login attempt from 10.1.2.100 during one sampling period of 60 seconds,

after the first 30 failed login attempts:

drop tcp 10.1.2.100 any > 10.1.1.100 22 (\

msg:"SSH Brute Force Attempt";

flow:established,to_server; \

content:"SSH"; nocase; offset:0; depth:4; \

detection_filter:track by_src, count 30, seconds 60; \

sid:1000001; rev:1;)

Since potentially many events will be generated, a detection filter would normally be used in conjunction with

an event filter to reduce the number of logged events.

△!
NOTE

As mentioned above, Snort evaluates detection filter as the last step of the detection and not in post-

detection.

234

3.7.8 Post-Detection Quick Reference

Table 3.12: Post-detection rule option keywords

Keyword Description

logto The logto keyword tells Snort to log all packets that trigger this rule to a special

output log file.

session The session keyword is built to extract user data from TCP Sessions.

resp The resp keyword is used attempt to close sessions when an alert is triggered.

react This keyword implements an ability for users to react to traffic that matches a

Snort rule by closing connection and sending a notice.

tag The tag keyword allow rules to log more than just the single packet that triggered

the rule.

replace Replace the prior matching content with the given string of the same length. Avail-

able in inline mode only.

detection filter Track by source or destination IP address and if the rule otherwise matches more

than the configured rate it will fire.

3.8 Rule Thresholds

△!
NOTE

Rule thresholds are deprecated and will not be supported in a future release. Use detection filters (3.7.7)

within rules, or event filters (2.4.2) as standalone configurations instead.

threshold can be included as part of a rule, or you can use standalone thresholds that reference the generator and

SID they are applied to. There is no functional difference between adding a threshold to a rule, or using a standalone

threshold applied to the same rule. There is a logical difference. Some rules may only make sense with a threshold.

These should incorporate the threshold into the rule. For instance, a rule for detecting a too many login password

attempts may require more than 5 attempts. This can be done using the ‘limit’ type of threshold. It makes sense that

the threshold feature is an integral part of this rule.

Format

threshold: \

type <limit|threshold|both>, \

track <by_src|by_dst>, \

count <c>, seconds <s>;

Examples

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, established; \

uricontent:"/robots.txt"; nocase; reference:nessus,10302; \

classtype:web-application-activity; threshold:type limit, track \

by_src, count 1 , seconds 60; sid:1000852; rev:1;)

235

Option Description

type limit|threshold|both type limit alerts on the 1st m events during the time interval, then ignores events

for the rest of the time interval. Type threshold alerts every m times we see

this event during the time interval. Type both alerts once per time interval after

seeing m occurrences of the event, then ignores any additional events during the

time interval.

track by src|by dst rate is tracked either by source IP address, or destination IP address. This means

count is maintained for each unique source IP addresses, or for each unique desti-

nation IP addresses. Ports or anything else are not tracked.

count c number of rule matching in s seconds that will cause event filter limit to be

exceeded. c must be nonzero value.

seconds s time period over which count is accrued. s must be nonzero value.

This rule logs every 10th event on this SID during a 60 second interval. So if less than 10 events occur in 60 seconds,

nothing gets logged. Once an event is logged, a new time period starts for type=threshold.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, established; \

uricontent:"/robots.txt"; nocase; reference:nessus,10302; \

classtype:web-application-activity; threshold:type threshold, \

track by_dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

This rule logs at most one event every 60 seconds if at least 10 events on this SID are fired.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, established; \

uricontent:"/robots.txt"; nocase; reference:nessus,10302; \

classtype:web-application-activity; threshold:type both, track \

by_dst, count 10, seconds 60; sid:1000852; rev:1;)

3.9 Writing Good Rules

There are some general concepts to keep in mind when developing Snort rules to maximize efficiency and speed.

3.9.1 Content Matching

Snort groups rules by protocol (ip, tcp, udp, icmp), then by ports (ip and icmp use slightly different logic), then by

those with content and those without. For rules with content, a multi-pattern matcher is used to select rules that

have a chance at matching based on a single content. Selecting rules for evaluation via this ”fast” pattern matcher was

found to increase performance, especially when applied to large rule groups like HTTP. The longer and more unique

a content is, the less likely that rule and all of its rule options will be evaluated unnecessarily - it’s safe to say there

is generally more ”good” traffic than ”bad”. Rules without content are always evaluated (relative to the protocol

and port group in which they reside), potentially putting a drag on performance. While some detection options, such

as pcre and byte test, perform detection in the payload section of the packet, they are not used by the fast pattern

matching engine. If at all possible, try and have at least one content (or uricontent) rule option in your rule.

3.9.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, instead of a specific exploit.

For example, look for a the vulnerable command with an argument that is too large, instead of shellcode that binds a

shell.

236

By writing rules for the vulnerability, the rule is less vulnerable to evasion when an attacker changes the exploit

slightly.

3.9.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper case letters. FTP is a good example. In FTP, to send the

username, the client sends:

user username_here

A simple rule to look for FTP root login attempts could be:

alert tcp any any -> any any 21 (content:"user root";)

While it may seem trivial to write a rule that looks for the username root, a good rule will handle all of the odd things

that the protocol might handle when accepting the user command.

For example, each of the following are accepted by most FTP servers:

user root

user root

user root

user root

user<tab>root

To handle all of the cases that the FTP server might handle, the rule needs more smarts than a simple string match.

A good rule that looks for root login on ftp would be:

alert tcp any any -> any 21 (flow:to_server,established; \

content:"root"; pcre:"/user\s+root/i";)

There are a few important things to note in this rule:

• The rule has a flow option, verifying this is traffic going to the server on an established session.

• The rule has a content option, looking for root, which is the longest, most unique string in the attack. This option

is added to allow the fast pattern matcher to select this rule for evaluation only if the content root is found in the

payload.

• The rule has a pcre option, looking for user, followed at least one space character (which includes tab), followed

by root, ignoring case.

3.9.4 Optimizing Rules

The content matching portion of the detection engine has recursion to handle a few evasion cases. Rules that are not

properly written can cause Snort to waste time duplicating checks.

The way the recursion works now is if a pattern matches, and if any of the detection options after that pattern fail, then

look for the pattern again after where it was found the previous time. Repeat until the pattern is not found again or the

opt functions all succeed.

On first read, that may not sound like a smart idea, but it is needed. For example, take the following rule:

alert ip any any -> any any (content:"a"; content:"b"; within:1;)

237

This rule would look for “a”, immediately followed by “b”. Without recursion, the payload “aab” would fail, even

though it is obvious that the payload “aab” has “a” immediately followed by “b”, because the first ”a” is not immedi-

ately followed by “b”.

While recursion is important for detection, the recursion implementation is not very smart.

For example, the following rule options are not optimized:

content:"|13|"; dsize:1;

By looking at this rule snippet, it is obvious the rule looks for a packet with a single byte of 0x13. However, because

of recursion, a packet with 1024 bytes of 0x13 could cause 1023 too many pattern match attempts and 1023 too many

dsize checks. Why? The content 0x13 would be found in the first byte, then the dsize option would fail, and because

of recursion, the content 0x13 would be found again starting after where the previous 0x13 was found, once it is found,

then check the dsize again, repeating until 0x13 is not found in the payload again.

Reordering the rule options so that discrete checks (such as dsize) are moved to the beginning of the rule speed up

Snort.

The optimized rule snipping would be:

dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as the dsize check is the first option checked and dsize is a

discrete check without recursion.

The following rule options are discrete and should generally be placed at the beginning of any rule:

• dsize

• flags

• flow

• fragbits

• icmp id

• icmp seq

• icode

• id

• ipopts

• ip proto

• itype

• seq

• session

• tos

• ttl

• ack

• window

• resp

• sameip

238

3.9.5 Testing Numerical Values

The rule options byte test and byte jump were written to support writing rules for protocols that have length encoded

data. RPC was the protocol that spawned the requirement for these two rule options, as RPC uses simple length based

encoding for passing data.

In order to understand why byte test and byte jump are useful, let’s go through an exploit attempt against the sadmind

service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88

00 00 00 0a 00 00 00 01 00 00 00 01 00 00 00 20

40 28 3a 10 00 00 00 0a 4d 45 54 41 53 50 4c 4f @(:.....metasplo

49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............

00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df@(:...e.

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04

7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 04

7f 00 00 01 00 01 87 88 00 00 00 0a 00 00 00 11

00 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f;metasplo

49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it..............

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00system..

00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f/../../../

2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 1e ../bin/sh.......

<snip>

Let’s break this up, describe each of the fields, and figure out how to write a rule to catch this exploit.

There are a few things to note with RPC:

• Numbers are written as uint32s, taking four bytes. The number 26 would show up as 0x0000001a.

• Strings are written as a uint32 specifying the length of the string, the string, and then null bytes to pad the length

of the string to end on a 4 byte boundary. The string “bob” would show up as 0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each request

00 00 00 00 - rpc type (call = 0, response = 1)

00 00 00 02 - rpc version (2)

00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)

00 00 00 0a - rpc program version (0x0000000a = 10)

00 00 00 01 - rpc procedure (0x00000001 = 1)

00 00 00 01 - credential flavor (1 = auth_unix)

00 00 00 20 - length of auth_unix data (0x20 = 32

the next 32 bytes are the auth_unix data

40 28 3a 10 - unix timestamp (0x40283a10 = 1076378128 = feb 10 01:55:28 2004 gmt)

00 00 00 0a - length of the client machine name (0x0a = 10)

4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)

00 00 00 00 - gid of requesting user (0)

00 00 00 00 - extra group ids (0)

239

00 00 00 00 - verifier flavor (0 = auth_null, aka none)

00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed to procedure 1 of sadmind.

However, we know the vulnerability is that sadmind trusts the uid coming from the client. sadmind runs any request

where the client’s uid is 0 as root. As such, we have decoded enough of the request to write our rule.

First, we need to make sure that our packet is an RPC call.

content:"|00 00 00 00|"; offset:4; depth:4;

Then, we need to make sure that our packet is a call to sadmind.

content:"|00 01 87 88|"; offset:12; depth:4;

Then, we need to make sure that our packet is a call to the procedure 1, the vulnerable procedure.

content:"|00 00 00 01|"; offset:20; depth:4;

Then, we need to make sure that our packet has auth unix credentials.

content:"|00 00 00 01|"; offset:24; depth:4;

We don’t care about the hostname, but we want to skip over it and check a number value after the hostname. This is

where byte test is useful. Starting at the length of the hostname, the data we have is:

00 00 00 0a 4d 45 54 41 53 50 4c 4f 49 54 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00

We want to read 4 bytes, turn it into a number, and jump that many bytes forward, making sure to account for the

padding that RPC requires on strings. If we do that, we are now at:

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00

which happens to be the exact location of the uid, the value we want to check.

In English, we want to read 4 bytes, 36 bytes from the beginning of the packet, and turn those 4 bytes into an integer

and jump that many bytes forward, aligning on the 4 byte boundary. To do that in a Snort rule, we use:

byte_jump:4,36,align;

then we want to look for the uid of 0.

content:"|00 00 00 00|"; within:4;

Now that we have all the detection capabilities for our rule, let’s put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01|"; offset:20; depth:4;

content:"|00 00 00 01|"; offset:24; depth:4;

byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

240

The 3rd and fourth string match are right next to each other, so we should combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01|"; offset:20; depth:8;

byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflow when reading the client’s hostname, instead of reading the

length of the hostname and jumping that many bytes forward, we would check the length of the hostname to make

sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into the packet, turn it into a number, and then make sure it is not

too large (let’s say bigger than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;

Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01|"; offset:20; depth:8;

byte_test:4,>,200,36;

241

Chapter 4

Dynamic Modules

Preprocessors, detection capabilities, and rules can now be developed as dynamically loadable modules to snort. The

dynamic API presents a means for loading dynamic libraries and allowing the module to utilize certain functions

within the main snort code.

The remainder of this chapter will highlight the data structures and API functions used in developing preprocessors,

detection engines, and rules as a dynamic plugin to snort.

Beware: the definitions herein may be out of date; check the appropriate header files for the current definitions.

4.1 Data Structures

A number of data structures are central to the API. The definition of each is defined in the following sections.

4.1.1 DynamicPluginMeta

The DynamicPluginMeta structure defines the type of dynamic module (preprocessor, rules, or detection engine), the

version information, and path to the shared library. A shared library can implement all three types, but typically is

limited to a single functionality such as a preprocessor. It is defined in sf dynamic meta.h as:

#define MAX_NAME_LEN 1024

#define TYPE_ENGINE 0x01

#define TYPE_DETECTION 0x02

#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta

{

int type;

int major;

int minor;

int build;

char uniqueName[MAX_NAME_LEN];

char *libraryPath;

} DynamicPluginMeta;

4.1.2 DynamicPreprocessorData

The DynamicPreprocessorData structure defines the interface the preprocessor uses to interact with snort itself. This

includes functions to register the preprocessor’s configuration parsing, restart, exit, and processing functions. It in-

242

cludes function to log messages, errors, fatal errors, and debugging info. It also includes information for setting

alerts, handling Inline drops, access to the StreamAPI, and it provides access to the normalized http and alternate

data buffers. This data structure should be initialized when the preprocessor shared library is loaded. It is defined in

sf dynamic preprocessor.h. Check the header file for the current definition.

4.1.3 DynamicEngineData

The DynamicEngineData structure defines the interface a detection engine uses to interact with snort itself. This

includes functions for logging messages, errors, fatal errors, and debugging info as well as a means to register and

check flowbits. It also includes a location to store rule-stubs for dynamic rules that are loaded, and it provides access

to the normalized http and alternate data buffers. It is defined in sf dynamic engine.h as:

typedef struct _DynamicEngineData

{

int version;

u_int8_t *altBuffer;

UriInfo *uriBuffers[MAX_URIINFOS];

RegisterRule ruleRegister;

RegisterBit flowbitRegister;

CheckFlowbit flowbitCheck;

DetectAsn1 asn1Detect;

LogMsgFunc logMsg;

LogMsgFunc errMsg;

LogMsgFunc fatalMsg;

char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;

SetRuleData setRuleData;

GetRuleData getRuleData;

DebugMsgFunc debugMsg;

#ifdef HAVE_WCHAR_H

DebugWideMsgFunc debugWideMsg;

#endif

char **debugMsgFile;

int *debugMsgLine;

PCRECompileFunc pcreCompile;

PCREStudyFunc pcreStudy;

PCREExecFunc pcreExec;

} DynamicEngineData;

4.1.4 SFSnortPacket

The SFSnortPacket structure mirrors the snort Packet structure and provides access to all of the data contained in a

given packet.

It and the data structures it incorporates are defined in sf snort packet.h. Additional data structures may be defined

to reference other protocol fields. Check the header file for the current definitions.

243

4.1.5 Dynamic Rules

A dynamic rule should use any of the following data structures. The following structures are defined in sf snort plugin api.h.

Rule

The Rule structure defines the basic outline of a rule and contains the same set of information that is seen in a text

rule. That includes protocol, address and port information and rule information (classification, generator and signature

IDs, revision, priority, classification, and a list of references). It also includes a list of rule options and an optional

evaluation function.

#define RULE_MATCH 1

#define RULE_NOMATCH 0

typedef struct _Rule

{

IPInfo ip;

RuleInformation info;

RuleOption **options; /* NULL terminated array of RuleOption union */

ruleEvalFunc evalFunc;

char initialized; /* Rule Initialized, used internally */

u_int32_t numOptions; /* Rule option count, used internally */

char noAlert; /* Flag with no alert, used internally */

void *ruleData; /* Hash table for dynamic data pointers */

} Rule;

The rule evaluation function is defined as

typedef int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacket structure.

RuleInformation

The RuleInformation structure defines the meta data for a rule and includes generator ID, signature ID, revision,

classification, priority, message text, and a list of references.

typedef struct _RuleInformation

{

u_int32_t genID;

u_int32_t sigID;

u_int32_t revision;

char *classification; /* String format of classification name */

u_int32_t priority;

char *message;

RuleReference **references; /* NULL terminated array of references */

RuleMetaData **meta; /* NULL terminated array of references */

} RuleInformation;

244

RuleReference

The RuleReference structure defines a single rule reference, including the system name and rereference identifier.

typedef struct _RuleReference

{

char *systemName;

char *refIdentifier;

} RuleReference;

IPInfo

The IPInfo structure defines the initial matching criteria for a rule and includes the protocol, src address and port, des-

tination address and port, and direction. Some of the standard strings and variables are predefined - any, HOME NET,

HTTP SERVERS, HTTP PORTS, etc.

typedef struct _IPInfo

{

u_int8_t protocol;

char * src_addr;

char * src_port; /* 0 for non TCP/UDP */

char direction; /* non-zero is bi-directional */

char * dst_addr;

char * dst_port; /* 0 for non TCP/UDP */

} IPInfo;

#define ANY_NET "any"

#define HOME_NET "$HOME_NET"

#define EXTERNAL_NET "$EXTERNAL_NET"

#define ANY_PORT "any"

#define HTTP_SERVERS "$HTTP_SERVERS"

#define HTTP_PORTS "$HTTP_PORTS"

#define SMTP_SERVERS "$SMTP_SERVERS"

RuleOption

The RuleOption structure defines a single rule option as an option type and a reference to the data specific to that

option. Each option has a flags field that contains specific flags for that option as well as a ”Not” flag. The ”Not” flag

is used to negate the results of evaluating that option.

typedef enum DynamicOptionType {

OPTION_TYPE_PREPROCESSOR,

OPTION_TYPE_CONTENT,

OPTION_TYPE_PCRE,

OPTION_TYPE_FLOWBIT,

OPTION_TYPE_FLOWFLAGS,

OPTION_TYPE_ASN1,

OPTION_TYPE_CURSOR,

OPTION_TYPE_HDR_CHECK,

OPTION_TYPE_BYTE_TEST,

OPTION_TYPE_BYTE_JUMP,

OPTION_TYPE_BYTE_EXTRACT,

OPTION_TYPE_SET_CURSOR,

OPTION_TYPE_LOOP,

OPTION_TYPE_MAX

245

};

typedef struct _RuleOption

{

int optionType;

union

{

void *ptr;

ContentInfo *content;

CursorInfo *cursor;

PCREInfo *pcre;

FlowBitsInfo *flowBit;

ByteData *byte;

ByteExtract *byteExtract;

FlowFlags *flowFlags;

Asn1Context *asn1;

HdrOptCheck *hdrData;

LoopInfo *loop;

PreprocessorOption *preprocOpt;

} option_u;

} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initialized at run time, such as the compiled PCRE information, Boyer-

Moore content information, the integer ID for a flowbit, etc.

The option types and related structures are listed below.

• OptionType: Content & Structure: ContentInfo

The ContentInfo structure defines an option for a content search. It includes the pattern, depth and offset, and

flags (one of which must specify the buffer – raw, URI or normalized – to search). Additional flags include

nocase, relative, unicode, and a designation that this content is to be used for snorts fast pattern evaluation. The

most unique content, that which distinguishes this rule as a possible match to a packet, should be marked for

fast pattern evaluation. In the dynamic detection engine provided with Snort, if no ContentInfo structure in a

given rules uses that flag, the one with the longest content length will be used.

typedef struct _ContentInfo

{

u_int8_t *pattern;

u_int32_t depth;

int32_t offset;

u_int32_t flags; /* must include a CONTENT_BUF_X */

void *boyer_ptr;

u_int8_t *patternByteForm;

u_int32_t patternByteFormLength;

u_int32_t incrementLength;

} ContentInfo;

#define CONTENT_NOCASE 0x01

#define CONTENT_RELATIVE 0x02

#define CONTENT_UNICODE2BYTE 0x04

#define CONTENT_UNICODE4BYTE 0x08

#define CONTENT_FAST_PATTERN 0x10

#define CONTENT_END_BUFFER 0x20

#define CONTENT_BUF_NORMALIZED 0x100

246

#define CONTENT_BUF_RAW 0x200

#define CONTENT_BUF_URI 0x400

• OptionType: PCRE & Structure: PCREInfo

The PCREInfo structure defines an option for a PCRE search. It includes the PCRE expression, pcre flags such

as caseless, as defined in PCRE.h, and flags to specify the buffer.

/*

pcre.h provides flags:

PCRE_CASELESS

PCRE_MULTILINE

PCRE_DOTALL

PCRE_EXTENDED

PCRE_ANCHORED

PCRE_DOLLAR_ENDONLY

PCRE_UNGREEDY

*/

typedef struct _PCREInfo

{

char *expr;

void *compiled_expr;

void *compiled_extra;

u_int32_t compile_flags;

u_int32_t flags; /* must include a CONTENT_BUF_X */

} PCREInfo;

• OptionType: Flowbit & Structure: FlowBitsInfo

The FlowBitsInfo structure defines a flowbits option. It includes the name of the flowbit and the operation (set,

setx, unset, toggle, isset, isnotset).

#define FLOWBIT_SET 0x01

#define FLOWBIT_UNSET 0x02

#define FLOWBIT_TOGGLE 0x04

#define FLOWBIT_ISSET 0x08

#define FLOWBIT_ISNOTSET 0x10

#define FLOWBIT_RESET 0x20

#define FLOWBIT_NOALERT 0x40

#define FLOWBIT_SETX 0x80

typedef struct _FlowBitsInfo

{

char *flowBitsName;

uint8_t operation;

uint16_t id;

uint32_t flags;

char *groupName;

uint8_t eval;

uint16_t *ids;

uint8_t num_ids;

} FlowBitsInfo;

• OptionType: Flow Flags & Structure: FlowFlags

The FlowFlags structure defines a flow option. It includes the flags, which specify the direction (from server,

to server), established session, etc.

247

#define FLOW_ESTABLISHED 0x10

#define FLOW_IGNORE_REASSEMBLED 0x1000

#define FLOW_ONLY_REASSMBLED 0x2000

#define FLOW_FR_SERVER 0x40

#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */

#define FLOW_TO_SERVER 0x80

#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags

{

u_int32_t flags;

} FlowFlags;

• OptionType: ASN.1 & Structure: Asn1Context

The Asn1Context structure defines the information for an ASN1 option. It mirrors the ASN1 rule option and

also includes a flags field.

#define ASN1_ABS_OFFSET 1

#define ASN1_REL_OFFSET 2

typedef struct _Asn1Context

{

int bs_overflow;

int double_overflow;

int print;

int length;

unsigned int max_length;

int offset;

int offset_type;

u_int32_t flags;

} Asn1Context;

• OptionType: Cursor Check & Structure: CursorInfo

The CursorInfo structure defines an option for a cursor evaluation. The cursor is the current position within the

evaluation buffer, as related to content and PCRE searches, as well as byte tests and byte jumps. It includes an

offset and flags that specify the buffer. This can be used to verify there is sufficient data to continue evaluation,

similar to the isdataat rule option.

typedef struct _CursorInfo

{

int32_t offset;

u_int32_t flags; /* specify one of CONTENT_BUF_X */

} CursorInfo;

• OptionType: Protocol Header & Structure: HdrOptCheck

The HdrOptCheck structure defines an option to check a protocol header for a specific value. It includes the

header field, the operation (<,>,=,etc), a value, a mask to ignore that part of the header field, and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID */

#define IP_HDR_PROTO 0x0002 /* IP Protocol */

#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Header */

#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP Header */

#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option xx included */

#define IP_HDR_TTL 0x0006 /* IP Time to live */

#define IP_HDR_TOS 0x0007 /* IP Type of Service */

248

#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value */

#define TCP_HDR_SEQ 0x0020 /* TCP Seq Value */

#define TCP_HDR_FLAGS 0x0030 /* Flags set in TCP Header */

#define TCP_HDR_OPTIONS 0x0040 /* TCP Options -- is option xx included */

#define TCP_HDR_WIN 0x0050 /* TCP Window */

#define TCP_HDR_OPTCHECK_MASK 0x00f0

#define ICMP_HDR_CODE 0x1000 /* ICMP Header Code */

#define ICMP_HDR_TYPE 0x2000 /* ICMP Header Type */

#define ICMP_HDR_ID 0x3000 /* ICMP ID for ICMP_ECHO/ICMP_ECHO_REPLY */

#define ICMP_HDR_SEQ 0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ECHO_REPLY */

#define ICMP_HDR_OPTCHECK_MASK 0xf000

typedef struct _HdrOptCheck

{

u_int16_t hdrField; /* Field to check */

u_int32_t op; /* Type of comparison */

u_int32_t value; /* Value to compare value against */

u_int32_t mask_value; /* bits of value to ignore */

u_int32_t flags;

} HdrOptCheck;

• OptionType: Byte Test & Structure: ByteData

The ByteData structure defines the information for both ByteTest and ByteJump operations. It includes the

number of bytes, an operation (for ByteTest, <,>,=,etc), a value, an offset, multiplier, and flags. The flags must

specify the buffer.

#define CHECK_EQ 0

#define CHECK_NEQ 1

#define CHECK_LT 2

#define CHECK_GT 3

#define CHECK_LTE 4

#define CHECK_GTE 5

#define CHECK_AND 6

#define CHECK_XOR 7

#define CHECK_ALL 8

#define CHECK_ATLEASTONE 9

#define CHECK_NONE 10

typedef struct _ByteData

{

u_int32_t bytes; /* Number of bytes to extract */

u_int32_t op; /* Type of byte comparison, for checkValue */

u_int32_t value; /* Value to compare value against, for checkValue, or extracted value */

int32_t offset; /* Offset from cursor */

u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */

u_int32_t flags; /* must include a CONTENT_BUF_X */

} ByteData;

• OptionType: Byte Jump & Structure: ByteData

See Byte Test above.

• OptionType: Set Cursor & Structure: CursorInfo

See Cursor Check above.

249

• OptionType: Loop & Structures: LoopInfo,ByteExtract,DynamicElement

The LoopInfo structure defines the information for a set of options that are to be evaluated repeatedly. The loop

option acts like a FOR loop and includes start, end, and increment values as well as the comparison operation for

termination. It includes a cursor adjust that happens through each iteration of the loop, a reference to a RuleInfo

structure that defines the RuleOptions are to be evaluated through each iteration. One of those options may be a

ByteExtract.

typedef struct _LoopInfo

{

DynamicElement *start; /* Starting value of FOR loop (i=start) */

DynamicElement *end; /* Ending value of FOR loop (i OP end) */

DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */

u_int32_t op; /* Type of comparison for loop termination */

CursorInfo *cursorAdjust; /* How to move cursor each iteration of loop */

struct _Rule *subRule; /* Pointer to SubRule & options to evaluate within

* the loop */

u_int8_t initialized; /* Loop initialized properly (safeguard) */

u_int32_t flags; /* can be used to negate loop results, specifies

} LoopInfo;

The ByteExtract structure defines the information to use when extracting bytes for a DynamicElement used a

in Loop evaluation. It includes the number of bytes, an offset, multiplier, flags specifying the buffer, and a

reference to the DynamicElement.

typedef struct _ByteExtract

{

u_int32_t bytes; /* Number of bytes to extract */

int32_t offset; /* Offset from cursor */

u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */

u_int32_t flags; /* must include a CONTENT_BUF_X */

char *refId; /* To match up with a DynamicElement refId */

void *memoryLocation; /* Location to store the data extracted */

} ByteExtract;

The DynamicElement structure is used to define the values for a looping evaluation. It includes whether the

element is static (an integer) or dynamic (extracted from a buffer in the packet) and the value. For a dynamic

element, the value is filled by a related ByteExtract option that is part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1

#define DYNAMIC_TYPE_INT_REF 2

typedef struct _DynamicElement

{

char dynamicType; /* type of this field - static or reference */

char *refId; /* reference ID (NULL if static) */

union

{

void *voidPtr; /* Holder */

int32_t staticInt; /* Value of static */

int32_t *dynamicInt; /* Pointer to value of dynamic */

} data;

} DynamicElement;

4.2 Required Functions

Each dynamic module must define a set of functions and data objects to work within this framework.

250

4.2.1 Preprocessors

Each dynamic preprocessor must define the following items. These must be defined in the global scope of a source

file (e.g. spp example.c).

• const int MAJOR VERSION

This specifies the major version of the preprocessor.

• const int MINOR VERSION

This specifies the minor version of the preprocessor.

• const int BUILD VERSION

This specifies the build version of the preprocessor.

• const char *PREPROC NAME

This specifies the display name of the preprocessor.

• void DYNAMIC PREPROC SETUP(void)

This function is called to register the preprocessor to be called with packets data.

The preprocessor must be built with the same macros defined as the Snort binary and linked with the dynamic prepro-

cessor library that was created during the Snort build. A package configuration file is exported as part of the Snort build

and can be accessed using the following commands with PKG CONFIG PATH=<snort build prefix/lib/pkgconfig>:

• pkg-config –cflags snort preproc

Returns the macros and include path needed to compile the dynamic preprocessor.

• pkg-config –libs snort preproc

Returns the library and library path needed to link the dynamic preprocessor.

4.2.2 Detection Engine

Each dynamic detection engine library must define the following functions.

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int InitializeEngineLib(DynamicEngineData *)

This function initializes the data structure for use by the engine.

The sample code provided with Snort predefines those functions and defines the following APIs to be used by a

dynamic rules library.

• int RegisterRules(Rule **)

This is the function to iterate through each rule in the list, initialize it to setup content searches, PCRE evaluation

data, and register flowbits.

• int DumpRules(char *,Rule **)

This is the function to iterate through each rule in the list and write a rule-stop to be used by snort to control the

action of the rule (alert, log, drop, etc).

251

• int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does not have its own Rule Evaluation Function. This uses the

individual functions outlined below for each of the rule options and handles repetitive content issues.

Each of the functions below returns RULE MATCH if the option matches based on the current criteria (cursor

position, etc).

– int contentMatch(void *p, ContentInfo* content, u int8 t **cursor)

This function evaluates a single content for a given packet, checking for the existence of that content as

delimited by ContentInfo and cursor. Cursor position is updated and returned in *cursor.

With a text rule, the with option corresponds to depth, and the distance option corresponds to offset.

– int checkFlow(void *p, FlowFlags *flowflags)

This function evaluates the flow for a given packet.

– int extractValue(void *p, ByteExtract *byteExtract, u int8 t *cursor)

This function extracts the bytes from a given packet, as specified by ByteExtract and delimited by cursor.

Value extracted is stored in ByteExtract memoryLocation parameter.

– int processFlowbits(void *p, FlowBitsInfo *flowbits)

This function evaluates the flowbits for a given packet, as specified by FlowBitsInfo. It will interact with

flowbits used by text-based rules.

– int setCursor(void *p, CursorInfo *cursorInfo, u int8 t **cursor)

This function adjusts the cursor as delimited by CursorInfo. New cursor position is returned in *cursor.

It handles bounds checking for the specified buffer and returns RULE NOMATCH if the cursor is moved

out of bounds.

It is also used by contentMatch, byteJump, and pcreMatch to adjust the cursor position after a successful

match.

– int checkCursor(void *p, CursorInfo *cursorInfo, u int8 t *cursor)

This function validates that the cursor is within bounds of the specified buffer.

– int checkValue(void *p, ByteData *byteData, u int32 t value, u int8 t *cursor)

This function compares the value to the value stored in ByteData.

– int byteTest(void *p, ByteData *byteData, u int8 t *cursor)

This is a wrapper for extractValue() followed by checkValue().

– int byteJump(void *p, ByteData *byteData, u int8 t **cursor)

This is a wrapper for extractValue() followed by setCursor().

– int pcreMatch(void *p, PCREInfo *pcre, u int8 t **cursor)

This function evaluates a single pcre for a given packet, checking for the existence of the expression as

delimited by PCREInfo and cursor. Cursor position is updated and returned in *cursor.

– int detectAsn1(void *p, Asn1Context *asn1, u int8 t *cursor)

This function evaluates an ASN.1 check for a given packet, as delimited by Asn1Context and cursor.

– int checkHdrOpt(void *p, HdrOptCheck *optData)

This function evaluates the given packet’s protocol headers, as specified by HdrOptCheck.

– int loopEval(void *p, LoopInfo *loop, u int8 t **cursor)

This function iterates through the SubRule of LoopInfo, as delimited by LoopInfo and cursor. Cursor

position is updated and returned in *cursor.

– int preprocOptionEval(void *p, PreprocessorOption *preprocOpt, u int8 t **cursor)

This function evaluates the preprocessor defined option, as specified by PreprocessorOption. Cursor posi-

tion is updated and returned in *cursor.

– void setTempCursor(u int8 t **temp cursor, u int8 t **cursor)

This function is used to handled repetitive contents to save off a cursor position temporarily to be reset at

later point.

– void revertTempCursor(u int8 t **temp cursor, u int8 t **cursor)

This function is used to revert to a previously saved temporary cursor position.

252

△!
NOTE

If you decide to write your own rule evaluation function, patterns that occur more than once may result in

false negatives. Take extra care to handle this situation and search for the matched pattern again if subsequent

rule options fail to match. This should be done for both content and PCRE options.

4.2.3 Rules

Each dynamic rules library must define the following functions. Examples are defined in the file sfnort dynamic detection lib.c.

The metadata and setup function for the preprocessor should be defined in sfsnort dynamic detection lib.h.

• int LibVersion(DynamicPluginMeta *)

This function returns the metadata for the shared library.

• int EngineVersion(DynamicPluginMeta *)

This function defines the version requirements for the corresponding detection engine library.

• int DumpSkeletonRules()

This functions writes out the rule-stubs for rules that are loaded.

• int InitializeDetection()

This function registers each rule in the rules library. It should set up fast pattern-matcher content, register

flowbits, etc.

The sample code provided with Snort predefines those functions and uses the following data within the dynamic rules

library.

• Rule *rules[]

A NULL terminated list of Rule structures that this library defines.

4.3 Examples

This section provides a simple example of a dynamic preprocessor and a dynamic rule.

4.3.1 Preprocessor Example

The following is an example of a simple preprocessor. This preprocessor always alerts on a packet if the TCP port

matches the one configured.

The following code is defined in spp example.c and is compiled together with libsf dynamic preproc.a, using pkg-

config, into lib sfdynamic preprocessor example.so.

Define the required meta data variables.

#define GENERATOR_EXAMPLE 256

extern DynamicPreprocessorData _dpd;

const int MAJOR_VERSION = 1;

const int MINOR_VERSION = 0;

const int BUILD_VERSION = 0;

const char *PREPROC_NAME = "SF_Dynamic_Example_Preprocessor";

#define ExampleSetup DYNAMIC_PREPROC_SETUP

253

Define the Setup function to register the initialization function.

void ExampleInit(unsigned char *);

void ExampleProcess(void *, void *);

void ExampleSetup()

{

_dpd.registerPreproc("dynamic_example", ExampleInit);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor: Example is setup\n"););

}

The initialization function to parse the keywords from snort.conf.

u_int16_t portToCheck;

void ExampleInit(unsigned char *args)

{

char *arg;

char *argEnd;

unsigned long port;

_dpd.logMsg("Example dynamic preprocessor configuration\n");

arg = strtok(args, " \t\n\r");

if(!strcasecmp("port", arg))

{

arg = strtok(NULL, "\t\n\r");

if (!arg)

{

_dpd.fatalMsg("ExamplePreproc: Missing port\n");

}

port = strtoul(arg, &argEnd, 10);

if (port < 0 || port > 65535)

{

_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);

}

portToCheck = port;

_dpd.logMsg(" Port: %d\n", portToCheck);

}

else

{

_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", arg);

}

/* Register the preprocessor function, Transport layer, ID 10000 */

_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 10000);

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor: Example is initialized\n"););

}

The function to process the packet and log an alert if the either port matches.

254

#define SRC_PORT_MATCH 1

#define SRC_PORT_MATCH_STR "example_preprocessor: src port match"

#define DST_PORT_MATCH 2

#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"

void ExampleProcess(void *pkt, void *context)

{

SFSnortPacket *p = (SFSnortPacket *)pkt;

if (!p->ip4_header || p->ip4_header->proto != IPPROTO_TCP || !p->tcp_header)

{

/* Not for me, return */

return;

}

if (p->src_port == portToCheck)

{

/* Source port matched, log alert */

_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,

1, 0, 3, SRC_PORT_MATCH_STR, 0);

return;

}

if (p->dst_port == portToCheck)

{

/* Destination port matched, log alert */

_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,

1, 0, 3, DST_PORT_MATCH_STR, 0);

return;

}

}

4.3.2 Rules

The following is an example of a simple rule, take from the current rule set, SID 109. It is implemented to work with

the detection engine provided with snort.

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \

(msg:"BACKDOOR netbus active"; flow:from_server,established; \

content:"NetBus"; reference:arachnids,401; classtype:misc-activity; \

sid:109; rev:5;)

This is the metadata for this rule library, defined in detection lib meta.h.

/* Version for this rule library */

#define DETECTION_LIB_MAJOR_VERSION 1

#define DETECTION_LIB_MINOR_VERSION 0

#define DETECTION_LIB_BUILD_VERSION 1

#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Example"

/* Required version and name of the engine */

#define REQ_ENGINE_LIB_MAJOR_VERSION 1

#define REQ_ENGINE_LIB_MINOR_VERSION 0

#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGINE"

255

The definition of each data structure for this rule is in sid109.c.

Declaration of the data structures.

• Flow option

Define the FlowFlags structure and its corresponding RuleOption. Per the text version, flow is from server,established.

static FlowFlags sid109flow =

{

FLOW_ESTABLISHED|FLOW_TO_CLIENT

};

static RuleOption sid109option1 =

{

OPTION_TYPE_FLOWFLAGS,

{

&sid109flow

}

};

• Content Option

Define the ContentInfo structure and its corresponding RuleOption. Per the text version, content is ”NetBus”,

no depth or offset, case sensitive, and non-relative. Search on the normalized buffer by default. NOTE: This

content will be used for the fast pattern matcher since it is the longest content option for this rule and no contents

have a flag of CONTENT FAST PATTERN.

static ContentInfo sid109content =

{

"NetBus", /* pattern to search for */

0, /* depth */

0, /* offset */

CONTENT_BUF_NORMALIZED, /* flags */

NULL, /* holder for boyer/moore info */

NULL, /* holder for byte representation of "NetBus" */

0, /* holder for length of byte representation */

0 /* holder for increment length */

};

static RuleOption sid109option2 =

{

OPTION_TYPE_CONTENT,

{

&sid109content

}

};

• Rule and Meta Data

Define the references.

static RuleReference sid109ref_arachnids =

{

"arachnids", /* Type */

"401" /* value */

};

static RuleReference *sid109refs[] =

256

{

&sid109ref_arachnids,

NULL

};

The list of rule options. Rule options are evaluated in the order specified.

RuleOption *sid109options[] =

{

&sid109option1,

&sid109option2,

NULL

};

The rule itself, with the protocol header, meta data (sid, classification, message, etc).

Rule sid109 =

{

/* protocol header, akin to => tcp any any -> any any */

{

IPPROTO_TCP, /* proto */

HOME_NET, /* source IP */

"12345:12346", /* source port(s) */

0, /* Direction */

EXTERNAL_NET, /* destination IP */

ANY_PORT, /* destination port */

},

/* metadata */

{

3, /* genid -- use 3 to distinguish a C rule */

109, /* sigid */

5, /* revision */

"misc-activity", /* classification */

0, /* priority */

"BACKDOOR netbus active", /* message */

sid109refs /* ptr to references */

},

sid109options, /* ptr to rule options */

NULL, /* Use internal eval func */

0, /* Holder, not yet initialized, used internally */

0, /* Holder, option count, used internally */

0, /* Holder, no alert, used internally for flowbits */

NULL /* Holder, rule data, used internally */

• The List of rules defined by this rules library

The NULL terminated list of rules. The InitializeDetection iterates through each Rule in the list and initializes

the content, flowbits, pcre, etc.

extern Rule sid109;

extern Rule sid637;

Rule *rules[] =

{

&sid109,

&sid637,

NULL

};

257

Chapter 5

Snort Development

Currently, this chapter is here as a place holder. It will someday contain references on how to create new detection

plugins and preprocessors. End users don’t really need to be reading this section. This is intended to help developers

get a basic understanding of whats going on quickly.

If you are going to be helping out with Snort development, please use the HEAD branch of cvs. We’ve had problems

in the past of people submitting patches only to the stable branch (since they are likely writing this stuff for their own

IDS purposes). Bug fixes are what goes into STABLE. Features go into HEAD.

5.1 Submitting Patches

Patches to Snort should be sent to the snort-devel@lists.snort.org mailing list. Patches should done with the

command diff -nu snort-orig snort-new.

5.2 Snort Data Flow

First, traffic is acquired from the network link via libpcap. Packets are passed through a series of decoder routines that

first fill out the packet structure for link level protocols then are further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of preprocessors. Each preprocessor checks to see if this packet is

something it should look at.

Packets are then sent through the detection engine. The detection engine checks each packet against the various options

listed in the Snort config files. Each of the keyword options is a plugin. This allows this to be easily extensible.

5.2.1 Preprocessors

For example, a TCP analysis preprocessor could simply return if the packet does not have a TCP header. It can do this

by checking:

if (p->tcph==null)

return;

Similarly, there are a lot of packet flags available that can be used to mark a packet as “reassembled” or logged. Check

out src/decode.h for the list of pkt * constants.

258

5.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it to a new item and change a few things. Later, we’ll document

what these few things are.

5.2.3 Output Plugins

Generally, new output plugins should go into the barnyard project rather than the Snort project. We are currently

cleaning house on the available output options.

5.3 Unified2 File Format

Unified 2 records should not be assumed to be in any order. All values are stored in network byte order.

An example structure of unified2 files

[Serial Unified2 Header]

[Unified2 IDS Event]

[Unified2 Packet]

[Unified2 Extra Data]

.

.

.

[Serial Unified2 Header]

[Unified2 IDS Event]

[Unified2 Packet]

[Unified2 Extra Data]

5.3.1 Serial Unified2 Header

record type 4 bytes

record length 4 bytes

All unified2 records are preceded by a Serial Unified2 header. This unified2 record allows an interpreting application

to skip past and apply simple heuristics against records.

The Record Type indicates one of the following unified2 records follows the Serial Unified2 Header:

Value Record Type

---------- -----------

2 Unified2 Packet

7 Unified2 IDS Event

72 Unified2 IDS Event IP6

104 Unified2 IDS Event (Version 2)

105 Unified2 IDS Event IP6 (Version 2)

110 Unified2 Extra Data

The record length field specifies the entire length of the record (not including the Serial Unified2 Header itself) up to

the next Serial Unified2 Header or EOF.

259

5.3.2 Unified2 Packet

sensor id 4 bytes

event id 4 bytes

event seconds 4 bytes

packet seconds 4 bytes

packet microseconds 4 bytes

linktype 4 bytes

packet length 4 bytes

packet data <variable length>

A Unified2 Packet is provided with each Unified2 Event record. This packet is the ‘alerting’ packet that caused a given

event.

Unified2 Packet records contain contain a copy of the packet that caused an alert (Packet Data) and is packet length

octets long.

5.3.3 Unified2 IDS Event

sensor id 4 bytes

event id 4 bytes

event second 4 bytes

event microsecond 4 bytes

signature id 4 bytes

generator id 4 bytes

signature revision 4 bytes

classification id 4 bytes

priority id 4 bytes

ip source 4 bytes

ip destination 4 bytes

source port/icmp type 2 bytes

dest. port/icmp code 2 bytes

protocol 1 byte

impact flag 1 byte

impact 1 byte

blocked 1 byte

Unified2 IDS Event is logged for IPv4 Events without VLAN or MPLS tagging.

5.3.4 Unified2 IDS Event IP6

sensor id 4 bytes

event id 4 bytes

event second 4 bytes

event microsecond 4 bytes

signature id 4 bytes

generator id 4 bytes

signature revision 4 bytes

classification id 4 bytes

priority id 4 bytes

ip source 16 bytes

ip destination 16 bytes

source port/icmp type 2 bytes

dest. port/icmp code 2 bytes

protocol 1 byte

260

impact flag 1 byte

impact 1 byte

blocked 1 byte

Unified2 IDS Event IP6 is logged for IPv6 Events without VLAN or MPLS tagging.

5.3.5 Unified2 IDS Event (Version 2)

sensor id 4 bytes

event id 4 bytes

event second 4 bytes

event microsecond 4 bytes

signature id 4 bytes

generator id 4 bytes

signature revision 4 bytes

classification id 4 bytes

priority id 4 bytes

ip source 4 bytes

ip destination 4 bytes

source port/icmp type 2 bytes

dest. port/icmp code 2 bytes

protocol 1 byte

impact flag 1 byte

impact 1 byte

blocked 1 byte

mpls label 4 bytes

vlan id 2 bytes

padding 2 bytes

Unified2 IDS Event (Version 2) are logged for IPv4 packets which contain either MPLS or VLAN headers. Otherwise

a Unified2 IDS Event is logged.

△!
NOTE

• Note that you’ll need to pass –enable-mpls to configure in order to have Snort fill in the mpls label

field.

• Note that you’ll need to configure unified2 logging with either mpls event types or vlan event types to

get this record type.

5.3.6 Unified2 IDS Event IP6 (Version 2)

sensor id 4 bytes

event id 4 bytes

event second 4 bytes

event microsecond 4 bytes

signature id 4 bytes

generator id 4 bytes

signature revision 4 bytes

classification id 4 bytes

priority id 4 bytes

ip source 16 bytes

ip destination 16 bytes

source port/icmp type 2 bytes

dest. port/icmp code 2 bytes

261

protocol 1 byte

impact flag 1 byte

impact 1 byte

blocked 1 byte

mpls label 4 bytes

vlan id 2 bytes

padding 2 bytes

Unified2 IDS Event IP6 (Version 2) are logged for IPv6 packets which contain either MPLS or VLAN headers.

Otherwise a Unified2 IDS Event IP6 is logged.

△!
NOTE

• Note that you’ll need to pass –enable-mpls to configure in order to have Snort fill in the mpls label

field.

• Note that you’ll need to configure unified2 logging with either mpls event types or vlan event types to

get this record type.

5.3.7 Unified2 Extra Data

sensor id 4 bytes

event id 4 bytes

event second 4 bytes

type 4 bytes

data type 4 bytes

data length 4 bytes

data <variable length>

5.3.8 Description of Fields

• Sensor ID

Unused

• Event ID

The upper 2 bytes represent the snort instance, if specified by passing the -G option to Snort.

The lower 2 bytes indicate the unique id of the event.

The Event ID field is used to facilitate the task of coalescing events with packet data.

• Event Seconds and Event Microseconds

Timestamp represented as seconds since the epoch of when the alert was generated.

• Link Type (Unified2 Packet)

The Datalink type of the packet, typically EN10M but could be any of the values as returned by pcap datalink

that Snort handles.

• Packet Length (Unified2 Packet)

Length of the Packet Data.

• Packet Data (Unified2 Packet)

The alerting packet, of Packet Length bytes long.

• Type (Unified2 Extra Data)

Type specifies the type of extra data that was logged, the valid types are:

262

Value Description

---------- -----------

1 Original Client IPv4

2 Original Client IPv6

3 UNUSED

4 GZIP Decompressed Data

5 SMTP Filename

6 SMTP Mail From

7 SMTP RCPT To

8 SMTP Email Headers

9 HTTP URI

10 HTTP Hostname

11 IPv6 Source Address

12 IPv6 Destination Address

13 Normalized Javascript Data

• Data Type (Unified2 Extra Data)

The type of extra data in the record.

Value Description

---------- -----------

1 Blob

• Data Length (Unified2 Extra Data)

Length of the data stored in the extra data record

• Data (Unified2 Extra Data)

Raw extra event data up to Data Length bytes in size.

All of these Extra data types, with the exception of 1, 2, 11, and 12 (IP Addresses) are stored in plain-text. The

IP Address types need to be interpreted as if they were coming off the wire.

• Signature ID

The Signature ID of the alerting rule, as specified by the sid keyword.

• Generator ID

The Generator ID of the alerting rule, as specified by the gid keyword.

• Signature Revision

Revision of the rule as specified by the rev keyword.

• Classification ID

Classification ID as mapped in the file classifications.conf

• Priority ID

Priority of the rule as mapped in the file classifications.conf or overridden by the priority keyword for text rules.

• IP Source

Source IP of the packet that generated the event.

• IP Destination

Destination IP of the packet that generated the event.

• Source Port/ICMP Type

If Protocol is TCP or UDP than this field contains the source port of the alerting packet.

If Protocol is ICMP than this field contains the ICMP type of the alerting packet.

263

• Destination Port/ICMP Code

If protocol is TCP or UDP than this field contains the source port of the alerting packet.

If protocol is icmp than this field contains the icmp code of the alerting packet.

• Protocol

Transport protocol of the alerting packet. One of: ip, tcp, udp, or icmp.

• Impact flag

Legacy field, specifies whether a packet was dropped or not.

Value Description

---------- -----------

32 Blocked

• Impact

UNUSED; deprecated.

• Blocked

Whether the packet was not dropped, was dropped or would have been dropped.

Value Description

---------- -----------

0 Was NOT Dropped

1 Was Dropped

2 Would Have Dropped*

△!
NOTE

Note that you’ll obtain Would Have Dropped on rules which are set to drop while Snort is running in inline-

test mode. Would Have Dropped is also obtained when a drop rule fires while pruning sessions or during

shutdown.

• MPLS Label (4 bytes)

The extracted mpls label from the mpls header in the alerting packet.

• VLAN ID

The extracted vlan id from the vlan header in the alerting packet.

• Padding

Padding is used to keep the event structures aligned on a 4 byte boundary.

5.4 Buffer dump utility

Buffer dump option will dump the buffers used by snort during different stages of packet processing path.

./configure --enable-buffer-dump / -DDUMP_BUFFER

Two options are provided to dump buffers. ’–buffer-dump-alert’ will dump buffers only when there is an alert.

’–buffer-dump’ will dump buffers for every packet.

./snort -A cmg -k none -Q --daq-dir=<dir> --daq dump -r <pcap> -c snort.conf --buffer-dump-alert=<file>

or

./snort -A cmg -k none -Q --daq-dir=<dir> --daq dump -r <pcap> -c snort.conf --buffer-dump=<file>

Note: If <file> parameter is not used, buffers are dumped on the console

264

5.4.1 Example Buffer Dump output

METHOD_DUMP, 3

00000000 47 45 54 |GET |

URI_DUMP, 340

00000000 2F 70 68 70 42 42 33 2F 76 69 65 77 74 6F 70 69 |/phpBB3/viewtopi|

00000010 63 2E 70 68 70 3F 70 3D 39 30 30 32 26 73 69 64 |c.php?p=9002&sid|

00000020 3D 66 35 33 39 39 61 32 64 32 34 33 63 65 61 64 |=f5399a2d243cead|

00000030 33 61 35 65 61 37 61 64 66 31 35 62 66 63 38 37 |3a5ea7adf15bfc87|

00000040 32 26 68 69 67 68 6C 69 67 68 74 3D 27 2E 66 77 |2&highlight=’.fw|

00000050 72 69 74 65 28 66 6F 70 65 6E 28 63 68 72 28 31 |rite(fopen(chr(1|

00000060 30 39 29 2E 63 68 72 28 34 39 29 2E 63 68 72 28 |09).chr(49).chr(|

00000070 31 30 34 29 2E 63 68 72 28 31 31 31 29 2E 63 68 |104).chr(111).ch|

00000080 72 28 35 30 29 2E 63 68 72 28 31 31 31 29 2E 63 |r(50).chr(111).c|

00000090 68 72 28 31 30 32 29 2C 63 68 72 28 39 37 29 29 |hr(102),chr(97))|

000000a0 2C 63 68 72 28 33 35 29 2E 63 68 72 28 33 33 29 |,chr(35).chr(33)|

000000b0 2E 63 68 72 28 34 37 29 2E 63 68 72 28 31 31 37 |.chr(47).chr(117|

000000c0 29 2E 63 68 72 28 31 31 35 29 2E 63 68 72 28 31 |).chr(115).chr(1|

000000d0 31 34 29 2E 63 68 72 28 34 37 29 2E 63 68 72 28 |14).chr(47).chr(|

000000e0 39 38 29 2E 63 68 72 28 31 30 35 29 2E 63 68 72 |98).chr(105).chr|

000000f0 28 31 31 30 29 2E 63 68 72 28 34 37 29 2E 63 68 |(110).chr(47).ch|

00000100 72 28 31 31 32 29 2E 63 68 72 28 31 30 31 29 2E |r(112).chr(101).|

00000110 63 68 72 28 31 31 34 29 2E 63 68 72 28 31 30 38 |chr(114).chr(108|

00000120 29 2E 63 68 72 28 31 30 29 2E 63 68 72 28 31 31 |).chr(10).chr(11|

00000130 37 29 2E 63 68 72 28 31 31 35 29 2E 63 68 72 28 |7).chr(115).chr(|

00000140 31 30 31 29 2E 63 68 72 28 33 32 29 29 2C 65 78 |101).chr(32)),ex|

00000150 69 74 2E FF |it.. |

265

5.5 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Steve Sturges

Bhagyashree Bantwal

Ed Borgoyn

Hui Cao

Russ Combs

Victor Roemer

Charles Summers

Josh Rosenbaum

Carter Waxman

Tom Peters

A V K Nageswara Rao (ANR)

Rahul Burman

Seshaiah Erugu

Krishnakanth K

Snort QA Team Chris Spencer

Jigeshwar Patel

Albert Lewis

Nihal Desai

Vulnerability Research Team Matt Watchinski

Aaron Benson

Nathan Benson

Andrew Blunck

Christoph Cordes

Joel Esler

Douglas Goddard

Ethan Gulla

Nigel Houghton

Pawel Janic

Richard Johnson

Tom Judge

Alex Kambis

Alex Kirk

Chris Marshall

Christopher McBee

Alex McDonnell

Kevin Miklavcic

Steve Morgan

Patrick Mullen

Katie Nolan

Matt Olney

Carlos Pacho

Ryan Pentney

Nick Randolph

Dave Raynor

Marcos Rodriguez

Ryan Steinmetz

Brandon Stultz

Andy Walker

Shawn Webb

Carl Wu

Yves Younan

Alain Zidouemba

266

Win32 Maintainer Snort Team

Snort Community Manager Joel Esler

Snort Web Team Aaron Norling

Mike Verbeck

Major Contributors Erek Adams

Michael Altizer

Ayushi Agarwal

Andrew Baker

Scott Campbell

Brian Caswell

Dilbagh Chahal

JJ Cummings

Scott Czajkowski

Roman D.

Michael Davis

Ron Dempster

Matt Donnan

Chris Green

Lurene Grenier

Mike Guiterman

Jed Haile

Justin Heath

Patrick Harper

Jeremy Hewlett

Ryan Jordan

Victor Julien

Glenn Mansfield Keeni

Adam Keeton

Keith Konecnik

Veronica Kovah

Chad Kreimendahl

Kevin Liu

Rob McMillen

William Metcalf

Andrew Mullican

Jeff Nathan

Marc Norton

Judy Novak

Andreas Ostling

William Parker

Chris Reid

Daniel Roelker

Dragos Ruiu

Chris Sherwin

Matt Smith

Jennifer Steffens

Todd Wease

JP Vossen

Leon Ward

Daniel Wittenberg

Phil Wood

Fyodor Yarochkin

267

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/phrack49/p49-06

[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

268

