Snort 3.1.18.0 on Ubuntu 18 & 20

Configuring a Full NIDS & SIEM

Noah Dietrich

SN

oy
]
\ (o))

2021-12-30

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

Contents

Introduction 3
Installing Snort 3
Configuring Network Cards 6
Configuring Snort 7
PulledPork 9
PulledPork3 9
PulledPork Original 12
Configuring Snort Plugins 15
JSON Alerts Output Plugin 15
Snort Startup Script 16
Splunk 18
Using Splunk 20
Enabling Splunk’s Free License 21
Reverse proxy for Splunk Web 21
Final Steps & System Cleanup 23
Conclusion 23
Appendix A: OpenAppID (Optional) 23

Noah Dietrich 2

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)

Introduction

This guide shows you how to setup Snort 3 with Splunk as a complete Network Intrusion Detection System (NIDS) and security information
and event management (SIEM) system on Ubuntu. The purpose of this guide is to teach you about the components and options that make
up Snort and Splunk based NIDS and SIEM so that you can modify Snort and Splunk to meet your specific needs. You can install Snort and
Splunk by copying and pasting the individual steps in this guide without taking the time to understand what you are doing, and that will
work fine. If however you take the time to understand why you are performing each step, you should have a much deeper understanding of
how both Snort and Splunk work.

About Snort 3: Snort 3 is rule-based network intrusion detection and prevention software (NIDS/NIPS).

About Splunk: Splunk is a security information and event management (SIEM) system that collects, stores, and allows you to easily analyze
and visualize data, including the alerts created by Snort.

About PulledPork: PulledPork or PulledPork3 is used to download and merge rulesets (the collection of signatures that Snort uses to match
against malicious traffic).

About OpenAppID: Snort OpenApplID allows Snort to identify, control, and measure the applications in use on the network. OpenAppID
consists of a set of packages (signatures) that match specific types of network data, including layer 7 applications, such as Facebook, DNS,
netflix, discus, and google, as well as the applications that use these services (chrome, http, https, etc.).

Software Requirements: This guide has been tested on the 64-bit LTS versions of Ubuntu server 18 and 20. This guide has been tested
against Snort 3.1.18.0.

Support: Read The Fine Manual (scroll down to Resources, the snort_reference manual has a lot of great information). If the manuals don’t
answer your question: you can ask for help on one of the Snort distribution lists:

e Snort Users
« Snort OpenApplID
« Snort Developers

Most requests should be sent to the Snort Users list, unless specifically related to OpenAppID or issues with the codebase. Please read how
to ask a good question and understand the mailing list etiquette.

Feedback: Please provide all feedback for this guide, including problems and recommendations to Noah@SublimeRobots.com.

Installing Snort

First, ensure your system is up to date and has the latest list of packages:

sudo apt-get update && sudo apt-get dist-upgrade -y

Make sure your system has the correct time and the correct time zone. This will be important later when we start processing alerts with
Splunk. The command below will allow you to choose your time zone:

sudo dpkg-reconfigure tzdata

We will be downloading a number of source tarballs and other files, we want to store them in one folder:

mkdir ~/snort_src
cd ~/snort_src

Install the Snort 3 prerequisites:

Noah Dietrich 3

https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://snort.org/snort3
https://www.splunk.com/
https://github.com/shirkdog/pulledpork
https://github.com/shirkdog/pulledpork3
https://blog.snort.org/2021/12/the-newest-version-of-snort-3-is.html
https://snort.org/snort3
https://lists.snort.org/mailman/listinfo/snort-users
https://lists.snort.org/mailman/listinfo/snort-openappid
https://lists.snort.org/mailman/listinfo/snort-devel
https://www.snort.org/faq/how-do-i-ask-a-good-question-on-the-snort-list
https://www.snort.org/faq/how-do-i-ask-a-good-question-on-the-snort-list
https://www.snort.org/faq/what-is-the-mailing-list-etiquette
mailto:Noah@SublimeRobots.com

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

sudo apt-get install -y build-essential autotools-dev libdumbnet-dev libluajit-5.1-dev libpcap-dev \
zliblg-dev pkg-config libhwloc-dev cmake liblzma-dev openssl libssl-dev cpputest libsqlite3-dev \
libtool uuid-dev git autoconf bison flex libcmocka-dev libnetfilter-queue-dev libunwind-dev \
libmnl-dev ethtool libjemalloc-dev

Download and install safec for runtime bounds checks on certain legacy C-library calls:

cd ~/snort_src

wget https://github.com/rurban/safeclib/releases/download/v02092020/libsafec-02092020.tar.gz
tar -xzvf libsafec-02092020.tar.gz

cd libsafec-02092020.0-g6d921f

./configure

make

sudo make install

Snort 3 uses Hyperscan for fast pattern matching. You can install an older version Hyperscan from the Ubuntu repositories, however since
Hyperscan is so critical to Snort’s operation and performace, it’s better to compile the latest stable version of Hyperscan. Hyperscan has a
number of regiurements, including PCRE, gperftools, ragel, and the Boost Libraries.

First Install PCRE: Perl Compatible Regular Expressions. We don’t use the Ubuntu repository because it has an older version:

cd ~/snort_src/

wget wget https://sourceforge.net/projects/pcre/files/pcre/8.45/pcre-8.45.tar.gz
tar -xzvf pcre-8.45.tar.gz

cd pcre-8.45

./configure

make

sudo make install

Download and install gperftools 2.9:

cd ~/snort_src

wget https://github.com/gperftools/gperftools/releases/download/gperftools-2.9.1/gperftools-2.9.1.tar.gz
tar xzvf gperftools-2.9.1.tar.gz

cd gperftools-2.9.1

./configure

make

sudo make install

Download and install Ragel:

cd ~/snort_src

wget http://www.colm.net/files/ragel/ragel-6.10.tar.gz
tar -xzvf ragel-6.10.tar.gz

cd ragel-6.10

./configure

make

sudo make install

And finally, download (but don’t install) the Boost C++ Libraries:
cd ~/snort_src

wget https://boostorg.jfrog.io/artifactory/main/release/1.77.0/source/boost_1_77_0.tar.gz
tar -xvzf boost_1_77_0.tar.gz

Install Hyperscan 5.4 from source, referencing the location of the Boost source directory:

Noah Dietrich 4

https://github.com/rurban/safeclib
https://www.hyperscan.io/
https://www.pcre.org/
https://github.com/gperftools/gperftools
https://www.colm.net/open-source/ragel/
https://www.boost.org/

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

cd ~/snort_src
wget https://github.com/intel/hyperscan/archive/refs/tags/v5.4.0.tar.gz
tar -xvzf v5.4.0.tar.gz

mkdir ~/snort_src/hyperscan-5.4.0-build
cd hyperscan-5.4.0-build/

cmake -DCMAKE_INSTALL_PREFIX=/usr/local -DBOOST_ROOT=~/snort_src/boost_1_77_0/ ../hyperscan-5.4.0

make
sudo make install

Install flatbuffers:

cd ~/snort_src

wget https://github.com/google/flatbuffers/archive/refs/tags/v2.0.0.tar.gz -0 flatbuffers-v2.0.0.tar.gz
tar -xzvf flatbuffers-v2.0.0.tar.gz

mkdir flatbuffers-build

cd flatbuffers-build

cmake ../flatbuffers-2.0.0

make

sudo make install

Next, download and install Data Acquisition library (DAQ) from the Snort website. Note that Snort 3 uses a different DAQ than the Snort 2.9.
series. You should check the Snort Website for newer versions of libdaq in case a newer version has been released since this guide was
written, or if you get an error that this file is missing.

cd ~/snort_src

wget https://github.com/snort3/libdaq/archive/refs/tags/v3.0.5.tar.gz -0 libdag-3.0.5.tar.gz
tar -xzvf libdaq-3.0.5.tar.gz

cd libdag-3.0.5

./bootstrap

./configure

make

sudo make install

Update shared libraries:

sudo ldconfig

Now we are ready to download, compile, and install Snort 3 from the snort website. If you are interested in enabling additional compile-time
functionality, such as the ability to process large (over 2 GB) PCAP files, or the new command line shell: you should run ./configure cmake.sh
——help to list all optional features, and append them to the ./configure_cmake.sh command below. You should check the Snort Website
for newer versions of Snort 3 in case a newer version has been released since this guide was written, or if you get an error that this file is
missing.

Download and install, with default settings:

cd ~/snort_src

wget https://github.com/snort3/snort3/archive/refs/tags/3.1.18.0.tar.gz -0 snort3-3.1.18.0.tar.gz
tar -xzvf snort3-3.1.18.0.tar.gz

cd snort3-3.1.18.0

./configure_cmake.sh --prefix=/usr/local --enable-tcmalloc --enable-jemalloc
cd build

make

sudo make install

Snort should now be installed under Jusr/local/. Finally, verify that Snort runs correctly. To do this, we pass the snort executable the -V flag
(uppercase V for version):

Noah Dietrich 5

http://google.github.io/flatbuffers/
https://www.snort.org/faq/readme-daq
https://www.snort.org/downloads
http://blog.snort.org/2015/03/basic-snort-usage.html
https://www.snort.org/downloads

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

/usr/local/bin/snort -V

You should see output similar to the following:
noah@snort3:~$ /usr/local/bin/snort -V

99— —*%> Snort++ <*x-
o")~ Version 3.1.18.0

rrnt By Martin Roesch & The Snort Team
http://snort.org/contact#team
Copyright (C) 2014-2021 Cisco and/or its affiliates. All rights reserved.
Copyright (C) 1998-2013 Sourcefire, Inc., et al.
Using DAQ version 3.0.5
Using LuaJIT version 2.1.0-beta3
Using OpenSSL 1.1.1f 31 Mar 2020
Using Llibpcap version 1.9.1 (with TPACKET_V3)
Using PCRE version 8.45 2021-06-15
Using ZLIB version 1.2.11
Using FlatBuffers 2.0.0
Using Hyperscan version 5.4.0 2021-07-05
Using LZMA version 5.2.4

If your output is similar to the above, congratulations! Snort is installed and working.

Now lets test Snort with the default configuration file:

snort -c /usr/local/etc/snort/snort.lua

You should see output that finishes with the following:

Snort successfully validated the configuration (with © warnings).
o")~ Snort exiting

Configuring Network Cards

Modern network cards use offloading (LRO for one example) to handle network packet re-assembly in hardware, rather than in software. For
most situations this is preferred as it reduces load on the system. For a NIDS, we want to disable LRO and GRO, since this can truncate longer
packets (more info in the Snort 2 manual.)

We need to create a systemD service to change these settings. First determine the name(s) of the interfaces you will have snort listen on
using ifconfig, or if on Ubuntu 20, use the new ip address show command.

Once you know the name of the network interface that Snort will listen for traffic on: check the status of large-receive-offload (LRO) and
generic-receive-offload (GRO) for those interfaces. In the example below, my interface name is ens3 (you’ll commonly see eth0 or ens160 as
interface names as well, depending on the system type). We use ethtool to check the status:

noah@snort3:~$ sudo ethtool -k ens3 | grep receive-offload
generic-receive-offload: on
large-receive-offload: off [fixed]

from this output, you can see that GRO is enabled, and LRO is disabled (the ’fixed’ means it can not be changed). We need to ensure that
both are set to ’off’ (or ’off [fixed]’). We could use the ethtool command to disable LRO and GRO, but the setting would not persist across
reboots. The solution is to create a systemD script to set this every time the system boots up.

create the systemD script:

sudo vi /lib/systemd/system/ethtool.service

Noah Dietrich 6

https://en.wikipedia.org/wiki/Large_receive_offload
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node7.html

Snort 3.1.18.0 on Ubuntu 18 & 20

2021-12-30

Enter the following information, replacing ens3 with your interface name:

[Unit]

Description=Ethtool Configration for Network Interface

[Service]

Requires=network.target

Type=oneshot

ExecStart=/sbin/ethtool -K ens3 gro off
ExecStart=/sbin/ethtool -K ens3 1lro off

[Install]
WantedBy=multi-user.target

Once the file is created, enable and start the service:

sudo
sudo

These settings will now persist across reboots. You can verify the setting using ethtool as above.

systemctl enable ethtool
service ethtool start

Configuring Snort

We need to create some folders and files that Snort reqiures for rules:

sudo
sudo
sudo

sudo
sudo

sudo

mkdir /usr/local/etc/rules
mkdir /Jusr/local/etc/so_rules/
mkdir /Jusr/local/etc/lists/

touch /usr/local/etc/rules/local.rules
touch /usr/local/etc/lists/default.blocklist

mkdir /var/log/snort

We will create one rule in the local.rules file that you created above:

sudo

vi Jusr/local/etc/rules/local.rules

This rule will detect ICMP traffic, and is really good for testing that Snort is working correctly and generating alerts. Paste the following line
into the local.rules file (make sure that you’re copying this line exactly, you must have a space after each semicolon in this file for PulledPork
to parse the alert correctly):

alert icmp any any -> any any (msg:"ICMP Traffic Detected"; sid:10000001; metadata:policy security-ips alert;)

Now run Snort and have it load the local.rules file (with the -R flag) to make sure it loads these rules correctly (verifying the rules are correctly

formatted):

snort -c /usr/local/etc/snort/snort.lua -R /usr/local/etc/rules/local.rules

The output should end with “Snort successfully validated the configuration”. You should not have any warnings or errors. If you scroll up

through the output, you should see this rule loaded successfully (under the rule counts section).

Now let’s run Snort in detection mode on an interface (change eth0 below to match your interface name), and print all alerts to the console:

sudo snort -c /usr/local/etc/snort/snort.lua -R /usr/local/etc/rules/local.rules \

-i eth® -A alert_fast -s 65535 -k none

Noah Dietrich

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

The flags we are using here are:

Flag Description

-c /usr/local/etc/snort/snort.lua The snort.lua configuration file.

-R Jusr/local/etc/rules/local.rules The path to the rules file containing our one ICMP rule.

-i ethO The interface to listen on.

-Aalert_fast Use the alert_fast output plugin to write alerts to the console.

-5 65535 Set the snaplen so Snort doesn’t truncate and drop oversized packets.

-k none Ignore bad checksums, otherwise snort will drop packets with bad checksums

Snort will load the configuration, then display:

Commencing packet processing
++ [0] etho

This means that snort is currently listening to all traffic on that interface, and comparing it to the rule it loaded. When traffic matches a
rule, Snort will write an alert to the console. Now from another window on that computer (open a new terminal window or a second ssh
session), use the ping command to generate packets that traverse the interface you are listening on (ping to that interface’s IP address if
you’re connecting from another computer, or just ping an external ip address if you’re on the same machine. You should see alerts print on
the screen:

12/15 —21:02:26.976073 [**] [1:10000001:0] "ICMP Traffic Detected" [**] [Priority: 0] {ICMP} 10.10.10.1 — 10.10.10.88
12/15 —21:02:26.976157 [**] [1:10000001:0] "ICMP Traffic Detected" [**] [Priority: 0] {ICMP} 10.10.10.88 —> 10.10.10.1

Use ctrl-c to stop Snort. This is a good rule for testing Snort, but can be a little noisy during actual production usage so comment it out with
the hash symbol if you like.

Next let’s edit the snort.lua file. This file is the configuration file we pass to Snort at startup:

sudo vi /usr/local/etc/snort/snort.lua

Next, we want to enable decoder and inspector alerts (malicious traffic that is detected by Snort, not the rules due to the more complex
format), and we want to tell the ips module where our rules file will be (PulledPork will create this for us later)

Scroll down to line 170, and look for the section titled ips. Here we un-comment (remove the leading two dashes) from en-
able_builtin_rules=true, and enable our pulledpork rules. Note that lua uses four spaces, not tabs to indent these lines (this is required).
This section should look like this (comments removed):

ips =

{
enable_builtin_rules = true,
include = RULE_PATH .. "/local.rules",
variables = default_variables

}

test your config file (since we’ve made changes):

snort -c /usr/local/etc/snort/snort.lua

Now we can run snort as above, however we don’t explictly pass the local.rules file on the command line, as we’ve included it in the ips
section in the snort.lua file:

sudo snort -c /usr/local/etc/snort/snort.lua -i eth® -A alert_fast -s 65535 -k none

Noah Dietrich 8

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

Ping the interface as above, and you should see the alerts written to the console again.

PulledPork

PulledPork is a tool that we will use to download rulesets, which are the latest rules files that snort/talos releases to ensure that your system
can detect the latest attacks. The original PulledPork is written in perl, and has worked wonderfully for years supporting Snort 2. With Snort
3, it was decided to re-write PulledPork in Python 3 and not add Snort3 functionality to the original PulledPork.

You need to decide if you want to use the original PulledPork or the new PulledPork3 for ruleset management; each have strenghs and
weaknesses. In the near future you’ll only want to use PulledPork3, but it’s still in Beta and may not be the correct solution right now,
depending on your needs.

The original PulledPork has not been modified to fully support Snort 3: it will not reload Snort 3 after updating rules, and it does not handle
compiled (.SO rules). However, the code base is very stable, and ouside of those two limitations, it is a solid product.

The new PulledPork3 is still in Beta, and is being activly devloped. It does handle .so rules, reloading Snort, and some of the advanced
functionality offered by the originall PulledPork. However: it is still under development, and may break going fowards as bugs are found and
features added.

Deciding what version of PulledPork to use: if this is a production system and you can do without the .so rules, can set Snort to reload
manually after updates, and you require a stable envirornment: stick with the original PulledPork. If this is a test system, or not mission
critical: you can probably use PulledPork3.

Once you’ve determined which version of PulledPork you want to use, follow those instructions from the correct section below: PulledPork3
or PulledPork Original.

PulledPork3

https://github.com/shirkdog/pulledpork3 is conceptually similar to the original PulledPork, there’s a single script to run, and you pass it a
configuration file to make sure you’re geting the files you want.

You will want to register with snort.org for a free oinkcode. This unique code will allow you to download the “registered” and “LightSPD”
rulesets . Without an Oinkcode, you are limited to downloading the “community” rulesets, which do not have many recent rules. You’ll need
this oinkcode later in the installation, so keep it handy.

Start by obtaining the latest version of PulledPork3:

cd ~/snort_src/
git clone https://github.com/shirkdog/pulledpork3.git

Next, copy the python file to an apropriate location:
cd ~/snort_src/pulledpork3
sudo mkdir /usr/local/bin/pulledpork3
sudo cp pulledpork.py /usr/local/bin/pulledpork3
sudo cp -r lib/ /usr/local/bin/pulledpork3
sudo chmod +x /usr/local/bin/pulledpork3/pulledpork.py

sudo mkdir /usr/local/etc/pulledpork3
sudo cp etc/pulledpork.conf /usr/local/etc/pulledpork3/

verify the PulledPork3 runs:

Jusr/local/bin/pulledpork3/pulledpork.py -V

You should see something similar to the following (version numbers may change):

Noah Dietrich 9

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

noah@snort3:~$ /usr/local/bin/pulledpork3/pulledpork.py -V
PulledPork v3.0.0.2

https://github.com/shirkdog/pulledpork3

=== 5) PulledPork v3.0.0-BETA
--==\\ / Lowcountry yellow mustard bbg sauce is the best bbq sauce. Fight me.

L~ Y[_ Copyright (C) 2021 Noah Dietrich, Colin Grady, Michael Shirk
@_/ / 66_ and the PulledPork Team!

I==0 Rules give me wings!

Next, we need to modify our pulledpork.conf file.

sudo vi /usr/local/etc/pulledpork3/pulledpork.conf

This configuration file is broken up into sections, and there are a number of options. We’ll opt for a simple configuration. We will download
the LightSPD ruleset by setting it to true (If you chose to not register with snort.org for the free oinkcode, you’ll be limited to the community
ruleset)):

community_ruleset = false

registered_ruleset = false
LightSPD_ruleset = true

Enter your oinkcode (line 8) from snort.org if you’re using the LightSPD_ruleset.

If you want to download and use blocklists, set one or both of the blocklists to true (lines 12 and 13).

snort_blocklist = true
et_blocklist = true

PulledPork needs to know where your snort binary is located. Set the snort_path to point to the snort binary path (and make sure to
un-comment this line):

snort_path = /usr/local/bin/snort

Where are your local rules saved (to include in pulledpork.rules)

local_rules = Jusr/local/etc/rules/local.rules

Now run PulledPork3:

sudo /usr/local/bin/pulledpork3/pulledpork.py -c /usr/local/etc/pulledpork3/pulledpork.conf

Once PulledPork3 finishes execution, there are multiple files created for you: [usr/local/etc/rules/pulledpork.rules will contain all the
rules from the downloaded ruleset, along with the rules from your local.rules file. Compiled rules, also called .so rules (referenced by some
of the rules in pulledpork.rules) will be saved in [usr/local/etc/so_rules/. blocklists (if enabled) will be downloaded, merged together, and
written to fusr/local/etc/lists/default.blocklist.

We need to modify our snort.lua file to load the new pulledpork.rules files (we don’t need to modify the blocklist, as that path was already
set earlier).

sudo vi /Jusr/local/etc/snort/snort.lua

Noah Dietrich 10

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

Modify the ips include option to change it from your local rules file to the new pulledpork.rules file:

ips =
{

enable_builtin_rules = true,
include = RULE_PATH .. "/pulledpork.rules",
variables = default_variables

Since you’ve modified the snort.lua, you should test it. We need to add an additional parameter here, to tell Snort3 where the .so rules are
located. The pulledpork.rules file contains a number of rules that reference the compiled .so rules, and if it can’t find the actual compiled
files (in /usr/local/etc/so_rules) you’ll get an error.

snort -c /usr/local/etc/snort/snort.lua --plugin-path /usr/local/etc/so_rules/

Now let’s create a systemd scheduled task to have pulledpork update rules daily. Due to the way systemd timers work, this requires two
parts. First we create the systemd unit file to runn pulledpork

sudo vi /lib/systemd/system/pulledpork3.service

enter the following text:
[Unit]
Description=Runs PulledPork3 to update Snort 3 Rulesets
Wants=pulledpork3.timer
[Service]
Type=oneshot
ExecStart=/usr/local/bin/pulledpork3/pulledpork.py -c /usr/local/etc/pulledpork3/pulledpork.conf

[Install]
WantedBy=multi-user.target

Enable and run the PulledPork unit file. This may take a minute to complete:

sudo systemctl enable pulledpork3
sudo service pulledpork3 start

Now that we have the service file created for pulledpork3, we need to create a systemd timer to run it daily. Create the timer:

sudo vi /lib/systemd/system/pulledpork3.timer

with the following content:

Noah Dietrich n

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

[Unit]

Description=Run PulledPork3 rule updater for Snort 3 rulesets
RefuseManualStart=no # Allow manual starts
RefuseManualStop=no # Allow manual stops

[Timer]

#Execute job if it missed a run due to machine being off
Persistent=true

#Run 120 seconds after boot for the first time
OnBootSec=120

#Run daily at 1 am

OnCalendar=*-%-%13:35:00

#File describing job to execute

Unit=pulledpork3.service

[Installl]
WantedBy=timers.target

This will run pulledpork daily at 13:35 every day, as well as 2 minutes after the sytem powers on. You should choose a different time to not
overwhelm Snort.org’s servers (run once per day).

Finally, enable the timer

sudo systemctl enable pulledpork3.timer

PulledPork Original

Follow this section’s instructions to install the Orriginal (stable, but with less features) version of PulledPork.

Start by registering an account on the Snort website to get a unique your oinkcode before continuing, as the oinkcode is required for the
most popular free ruleset.

Install the PulledPork pre-requisites:

sudo apt-get install -y libcrypt-ssleay-perl liblwp-useragent-determined-perl

Next, download the latest version of PulledPork and install it by copying the perl file to /usr/local/bin and the needed configuration files to
usr/local/etc/pulledpork:

cd ~/snort_src

wget https://github.com/shirkdog/pulledpork/archive/master.tar.gz -0 pulledpork-master.tar.gz

tar xzvf pulledpork-master.tar.gz

cd pulledpork-master/

sudo cp pulledpork.pl /usr/local/bin
sudo chmod +x /usr/local/bin/pulledpork.pl

sudo mkdir /usr/local/etc/pulledpork
sudo cp etc/*.conf /usr/local/etc/pulledpork

Test that PulledPork runs by running it with the -V flag as done below, looking for the output below:

noah@snort3:~$ /usr/local/bin/pulledpork.pl -V
PulledPork v0.8.0 - The only positive thing to come out of 2020...well this and take-out liquor!

Now that we are sure that PulledPork runs, we need to configure it:

sudo vi /usr/local/etc/pulledpork/pulledpork.conf

Noah Dietrich 12

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

line 19, we need to change the URL, and then replace <oinkcode> with the oinkcode you got when you registered with the snort.org website.
This tells PulledPork where to download the rules from.

rule_url=https://www.snort.org/rules/|snortrules-snapshot.tar.gz|<oinkcode>

line 21: Comment out the community rules. These are not needed since they are included in the registered ruleset we included above:

#rule_url=https://snort.org/downloads/community/|community-rules.tar.gz|Community

line 72: We need to point ot the correct snort.rules file, where PulledPork will save all the rules it downloads and includes from the local.rules
file:

rule_path=/usr/local/etc/rules/snort.rules

line 87: We need to tell PulledPork where the local.rules file is to copy rules from (and into our snort.rules):

local_rules=/usr/local/etc/rules/local.rules

line 94: This tells PulledPork to output metadata about the rules in the newer sid_msg format:

sid_msg_version=2

line 134, change the distro to Ubuntu-18-4 (even if you’re running Ubuntu 20):

distro=Ubuntu-18-4

line 142: This tells PulledPork where to save the blocklist (IP Addresses that are known to be malicious and should be blocked):

block_list=/usr/local/etc/lists/default.blocklist

line 151: Tell PulledPork the default location for block and allow lists:

IPRVersion=/usr/local/etc/lists

line 209: uncomment this line to enable all rules in the downloaded rule file. The rules are split into different rulesets, depending on how
aggresive you want to detect traffic. If you were running in IPS mode (blocking instead of detecting traffic). You might consider going with
the “ballanced” ruleset rather than “security”, as the “security” ruleset is more aggressive about detecting traffic that might be malicious, or
might be normal:

ips_policy=ballanced

Run PulledPork, passing it our configuration file and do extra logging. This will download the latest rulesets, combine them with any rules in
our local.rules file and save all the rules into snort.rules, as well as save blacklist entries in our defautl.blocklist file:

sudo /usr/local/bin/pulledpork.pl -c /usr/local/etc/pulledpork/pulledpork.conf -1 -P -E -T

we are using the following flags:

Flag Description

-c /usr/local/etc/pulledpork/pulledpork.conf The PulledPork configuration file

-l log important info to syslog

Noah Dietrich 13

Snort 3.1.18.0 on Ubuntu 18 & 20

2021-12-30

Flag

you should see output similar to the following:

Rule Stats...
New:--—--—-- 15047
Deleted:---0
Enabled Rules:----15048
Dropped Rules:----0
Disabled Rules:---0
Total Rules:——---- 15048
IP Blocklist Stats...
Total IPs:----- 760
Done

Description

Process rules even if no new rules downloaded
only write enabled rules out

Do not use .so rules (they don’t work with original PuledPork)

Please review /var/log/sid_changes.log for additional details

Fly Piggy Fly!

If this works, the next step is to turn this command into a scheduled task, so that we can update our rulesets daily:

sudo crontab -e

The Snort team has asked you to randomize when PulledPork connects to their server to help with load balancing. In the example below, we
have PulledPork checking at 13:44 every day. Change the minutes value (the 44 below) to a value between 0 and 59, and the hours value (the

13 below) to a value between 00 and 23:

44 13 *x * x [fusr/local/bin/pulledpork.pl -c /usr/local/etc/pulledpork/pulledpork.conf -1 -P -E -T

check your snort.rules file, you should see a number of new rules that pulledpork installed for you to use.

Modify snort.lua to load the snort.rules rather than the local.rules file (the rulesin our local.rules are automatically added to the snort.rules
file automatically by PulledPork along with all the downloaded rules, you should see any rules from your local.rules included at the end of

the snort.rules file):

ips =

{
enable_builtin_rules = true,
include = RULE_PATH ..
variables = default_variables

}

"/snort.rules",

Test Snort to see if those rules load correctly:

snort -c /usr/local/etc/snort/snort.lua

scroll up, and you should see something like:

rule counts

total rules loaded:
text rules:

builtin rules:
option chains:
chain headers:

15573
15048
525
15573
330

Noah Dietrich

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

Configuring Snort Plugins

We want to enable a number of features in our snort.lua file:

sudo vi /usr/local/etc/snort/snort.lua

First let’s configure our HOME_NET variable. This refers to the local subnet we are defending (rules use this information to determine if an
alert matches). Set your local subnet information here to match your subnet. My subnet below is the 10.0.0.0 network with a 24-bit subnet
mask:

HOME_NET = '10.0.0.0/24'

Enable hyperscan (faster pattern matching): more info here, place this after the repuatation inspector, but before section 3: configure
bindings:

search_engine = { search_method = "hyperscan" }
detection = {

hyperscan_literals = true,
pcre_to_regex = true

Enable the reputation blocklist. remove the comments (the block comments around the entire reputation block) from the reputation
inspector, and enable the blocklist (note, the snort.lua file uses the older, unsupported “blacklist”, which has been replaced with blocklist):

reputation =

{
blocklist = BLACK_LIST_PATH .. "/default.blocklist",

3

Every time we modify our snort.lua we want to validate the file. If you’re Using PulledPork3: you need to include the --plugin-path option
pointing to the so_rules folder as well. Run one of the following two commands to test:

snort -c /usr/local/etc/snort/snort.lua

or if you are using PulledPork3 with so_rules:
snort -c /usr/local/etc/snort/snort.lua --plugin-path /usr/local/etc/so_rules/

JSON Alerts Output Plugin

In order to easily import the Snort 3 alert log files into your SIEM of choice (like Splunk), you will want to use the alert_json output plugin to
write all alerts to a json-formatted text file. Enabling the json output plugin is easy, just modify your snort.lua file (in section 7: configure
outputs, around line number 230):

sudo vi /usr/local/etc/snort/snort.lua

First, enable the alert_json plugin as shown below. Remember that indents use 4 spaces instead of a tab:

alert_json =

{
file = true,
limit = 100,
fields = 'seconds action class b64_data dir dst_addr dst_ap dst_port eth_dst eth_len \
eth_src eth_type gid icmp_code +icmp_id icmp_seq icmp_type iface ip_id ip_len msg mpls \
pkt_gen pkt_len pkt_num priority proto rev rule service sid src_addr src_ap src_port \
target tcp_ack tcp_flags tcp_len tcp_seq tcp_win tos ttl udp_len vlan timestamp',

}

Noah Dietrich 15

https://blog.snort.org/2020/09/snort-3-hyperscan-.html

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

In the alert_json plugin, we are specifying three options:

1. First we use the file option to enable outputting alerts to the json-formatted file (instead of to the console).

2. Next we specify the limit option to tell Snort when to roll over to a new file. When the output file reaches 10 MB, a new file will be
created, using the current unixtime in the filename. We set this to 100 MB for testing, but on a production system you probably want
to increase this number, depending on how you’re doing log management / rotation.

3. Finally we specify the fields option, which identifies which specific fields from the alert should be included in the json output. In this
example we have chosen every possible field to be output.

Note: After testing, you can choose to remove some of these fields (the vian and mpls fields are often not necessary, and the b64_data
contains the entire packet payload, which can be removed to save space, although there is a lot of good info in this field). Do not remove the
seconds field, and make sure it is always the first field listed. This will allow Splunk to correctly process the events.

Now we want to run Snort, and generate some alerts. these alerts will be written to /var/log/snort. Run the below, and ping the interface
again (like we did before to generate traffic that matches the rule in our local.rules file):

sudo /usr/local/bin/snort -c /usr/local/etc/snort/snort.lua -s 65535 \
-k none -1 /var/log/snort -i eth® -m Ox1lb

(and again, include --plugin-path if using PulledPork3)

We added a few new flags to this command:

Flag Description

-lvar/log/snort the directory where log files should be written

-m Ox1b Umask of 033 for file permissions (rw-r-r-)

you won’t see anything output to the screen after snort starts, since we’ve enabled the alert_json output module (which writes to /var/log/s-
nort as specified in the command above). Stop snort (ctrl-c), and then check /var/log/snort:

cat /var/log/snort/alert_json.txt

you’ll see the data from the alert in JSON format in the file:

{ "seconds" : 1608147213, "action" : "allow", "class" : "none", "b64_data" : "
DWHaXwAAAADOOWgAAAAAABAREhMUFRYXGBkaGxwdHh8gISIjICUmIygpKissLS4vMDEYMzQINjc=", "dir" : "S2C", "
dst_addr" : "10.10.10.1", "dst_ap" : "10.10.10.1:0", "eth_dst" : "52:54:00:1F:8A:1C", "eth_len"
98, "eth_src" : "52:54:00:70:78:9F", "eth_type" : "0Ox800", "gid" : 1, "dicmp_code" : 0, "dicmp_id" :
5203, "icmp_seq" : 3, "icmp_type" : 0, "iface" : "ens3", "ip_id" : 3006, "ip_len" : 64, "msg" : "
ICMP Traffic Detected", "mpls" : 0, "pkt_gen" : "raw", "pkt_len" : 84, "pkt_num" : 8, "priority" :
0, "proto" : "ICMP", "rev" : 0, "rule" : "1:10000001:0", "service" : "unknown", "sid" : 10000001, "
src_addr" : "10.10.10.88", "src_ap" : "10.10.10.88:0", "tos" : 0, "ttl" : 64, "vlan" : 0, "
timestamp" : "12/16-20:33:33.603502" }

Snort Startup Script

We create a systemD script to run snort automatically on startup. We will also have snort run as a regular (non-root) user after startup for
security reasons. First create the snort user and group:

sudo groupadd snort
sudo useradd snort -r -s /sbin/nologin -c SNORT_IDS -g snort

remove old log files (move them if you want to keep them):

sudo rm /var/log/snort/*

Noah Dietrich 16

Snort 3.1.18.0 on Ubuntu 18 & 20

2021-12-30

We need to grant the ’snort’ user rights to the log directory:

sudo chmod -R 5775 /var/log/snort
sudo chown -R snort:snort /var/log/snort

create the systemD service file:

sudo vi /lib/systemd/system/snort3.service

with the following content (change the ethernet adapter eth0 to match your adapter):

Note: if you’re running PulledPork3, you’ll need one additional paramter that will load the .so rules from /usr/local/etc/so_rules/, the

--plugin-path option.

[Unit]

Description=Snort3 NIDS Daemon
After=syslog.target network.target

[Service]
Type=simple

ExecStart=/usr/local/bin/snort -c /usr/local/etc/snort/snort.lua -s 65535 \
-k none -1 /var/log/snort -D -u snort -g snort -i eth® -m 0xlb --create-pidfile \
--plugin-path=/usr/local/etc/so_rules/

[Install]

WantedBy=multi-user.target

Here’s a breakdown of all the flags we are using with Snort:

Flag

Jusr/local/bin/snort

-c /usr/local/etc/snort/snort.lua
-5 65535

-k none

-l /var/log/snort
-D

-u snort

-g snort

-i ethO

-m 0x1b
--create-pidfile

--plugin-path

Description

This is the path to the snort binary. We don’t use sudo here since the script will be started with
elevated (root) privileges.

The snort.lua configuration file.

Set the snaplen so Snort doesn’t truncate and drop oversized packets.

Ignore bad checksums, otherwise snort will drop packets with bad checksums, and they won’t be
evaluated.

The path to the folder where Snort will store all the log files it outputs.

Run as a Daemon.

After startup (and after doing anything that requires elevated privileges), switch to run as the “snort”
user.

After startup, run as the “snort” group.

The interface to listen on.

Umask of 033 for file permissions.

Create a PID file in the log directory (so pulledpork can restart snort after loading new rules)

For PulledPork3 only: where are the .so rules stored.

Enable the Snort systemD service and start it:

sudo systemctl enable snort3
sudo service snort3 start

check the status of the service:

Noah Dietrich

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

service snort3 status

your output should be similar to the following, showing ‘active (running)’:

noah@snort3:~/pcaps$ service snort3 status

* snort3.service - Snort3 NIDS Daemon
Loaded: loaded (/lib/systemd/system/snort3.service; enabled; vendor preset: enabled)
Active: active (running) since Tue 2018-12-11 16:48:44 EST; 2min 57s ago

you can check the full output of the service with the following command if there are any problems:

sudo journalctl -u snort3.service

If you’re running PulledPork3: we can now configure it to tell Snort to reload the rules files and blocklist files when PulledPork3 modifies
them.

Edit your pulledpork.conf file:

sudo vi /Jusr/local/etc/pulledpork3/pulledpork.conf

Uncomment line 40:

pid_path=/var/log/snort/snort.pid

Now when PulledPork3 runs, it will tell snort the files are modifed, and to reload them.

Splunk

Splunk is the software we will use as our SIEM (Security information and event management) solution, which will display graphically (through
a web interface) all the alerts Snort has generated, and will give us some powerful tools to search and understand those alerts, as well as
draw deeper information from them. Splunk is free (as in cost) software for the way we are using it (although you can purchase a license
for additional functionality relating mostly to managing large Splunk installations). Alternative software would be Elasticstack’s ELK stack
(which I don’t use here because the configuration is more complex).

Installing Splunk:

You will need to create a free account on Splunk’s website to download the software and Add-ons. Navigate to Splunk’s Homepage, click on
the Free Splunk button in the upper right, create a new account (or login if you already have an account). After logging in, navigate to the
download page, where you will click the link under “Splunk Enterprise” titled Download Free 60-day trial.

On the download page, click the Linux tab, and then click the Download Now button next to .deb (since we’re running Ubuntu, a Debian-
based system). Agree to the license, and click the start your download now button. The download page will automatically open up a
window to save the download to your local system. If you want to use wget to download the installer instead, you can cancel this download,
then click Download via Command Line (wget) to copy the wget string for your download. The download is approximately 420 MB.

Once you have the Splunk installer on your system, you need to install it. From the directory where you saved the installer:

sudo dpkg -i splunk-8.x.deb
sudo chown -R splunk:splunk /opt/splunk

This will install Splunk to /opt/splunk. Note that the volume Splunk is installed to must have 5 GB of free space or Splunk will not start. The
indexes where Splunk stores all the collected log data reside in a sub-folder of the install location, so make sure there’s enough space on this
volume for all the data you expect to collect.

Now we want to start Splunk for the first time (accepting the license and taking all default options), You will be prompted to create a new
admin user and password for Splunk. Save these credentials, as we will use them later to log into the web interface:

Noah Dietrich 18

https://www.splunk.com/
https://www.splunk.com/en_us/download.html
https://www.splunk.com/en_us/download/splunk-enterprise.html

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

sudo /opt/splunk/bin/splunk start --answer-yes --accept-license

then we want to configure Splunk to start automatically at boot time. We will also enable systemD for Splunk and start the service (not the
uppercase “S” in the Splunk systemD service name).

sudo /opt/splunk/bin/splunk stop
sudo /opt/splunk/bin/splunk enable boot-start -systemd-managed 1

sudo chown -R splunk:splunk /opt/splunk
sudo service Splunkd start

The Splunk server is now listening on port 8000 of this server (http://localhost:8000 if you’re connecting from the local machine, or via the
IP address of this system from another computer). The username and the password are the ones you setup when installing Splunk.

Splunk is running with the free Enterprise Trial license at this time, giving all Enterprise features for 60 days, and allowing you to index 5
GB of log data per day. The only feature that we will loose once the trial license expires that will affect this installation is the removal of
authenticated logins. Once you convert to the free license, you will not be prompted to log into the Splunk web interface.

Splunk Enterprise offers a number of features, including a deployment server to automatically update Splunk instances and the Splunk apps
they run automatically, multiple user accounts with configurable permissions, load balancing, and other features.

Configuring Splunk:

Now log onto your Splunk instance, using the username and password you created during the Splunk install. The Splunk server is listening
on port 8000 (http://localhost:8000).

We need to install a Splunk Plugin (called an Add-on) that will allow us to easily ingest (collect) logs created by Snort 3 and normalize them
(make sure field naming is consistent with NIDS data so that Splunk apps can display our data easily).

To install this app, from the main web page of your Splunk instance, click the link titled +Find More Apps on the left side of the Splunk Web
Interface:

&« C Y @ Notsecure | 10.10.10.228:8000/en-US/

Explore Splunk Enterprise

Proc

New to Splunk

This will take you to Splunkbase, an on line repository for Splunk Add-ons that extend and enhance the functionality of your Splunk
installation. Search Splunkbase for Snort and you’ll be presented with one result: Snort 3 JSON Alerts. Click the green install button, next
to this Add-on:

Browse More Apps

snort3 X Best Match Newest Popular

1Apps

CATEGORY

[pevops Snort 3 JSON Alerts m

D Security, Fraud & Compliance

[J 7 Operations This repesitory is a Technology Add-On for Splunk that allows you to ingest IDS alerts into Splunk from Snort 3 in json
D Utilities format. This plugin normalizes these alerts conform to the "Intrusion Detection" model in the Splunk Common
D Business Analytics Information Model (CIM), and can be accessed within any app or dashboard that reports Intrusion Detection events.

[J 16T & Industrial Data

CIM VERSION Category: Security, Fraud & Compliance | Author: Noah Dietrich | Downloads: 20 | Released: a month ago | Last Updated: amonth ago |
OJax View on Splunkbase
J3x

Noah Dietrich 19

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

enter the username and password your created with Splunk when you registered to download Splunk (not the username and password
you created for your local Splunk server instance). Accept the terms & conditions, and click Login and Install. click done once the install is
completed.

Next we want to install the CyberChef for Splunk plugin that will allow us to covert the b64_data fields into readable text. Just like above,
search Splunkbase for “cyberchef”, click the greeen install button next to CyberChef for Splunk, login, and then install:

[cyberchef] x] BestMatch Newest Popular
2 Apps
CATEGORY
() pevops W Cyperchef for Splunk m
[J 1T operations -
(] security, Fraud & Compliance This Splunk App provides a Custom Search Command that allows you to apply CyberChef operations and recipes to
[Business Analytics your events. This App also provides a local version of the CyberChef web GUI

[T11AT 2 Indnetrial Rata

Next,we need to configure the Snort 3 JSON Alerts add-on to tell Splunk where the log files are stored that Snort 3 generated so Splunk can
ingest them. We do this from the command line with a configuration file:

sudo mkdir /opt/splunk/etc/apps/TA_Snort3_json/local

sudo touch /opt/splunk/etc/apps/TA_Snort3_json/local/inputs.conf
sudo vi /opt/splunk/etc/apps/TA_Snort3_json/local/inputs.conf

Enter the following text into this inputs.conf file:

[monitor:///var/log/snort/*alert_json.txtx]
sourcetype = snort3:alert:json

restart Splunk:

sudo service Splunkd restart

now when Splunk starts, it will scan the [var/log/snort directory for json files, assign them sourcetype of snort3:alert:json, and ingest
them so we can search them.

from your Splunk instance, log in (since you rebooted the server), click the Splunk > Enterprise link in the upper left, and then click the
Search and Reporting app link on the left side. In the search field, enter the following text:

sourcetype="snort3:alert:json"

and then click the green magnifying glass icon to start the search.

Search Metrics D 2eports y s) s > Search & Reporting
Search

sourcetype="snort3:alert:json" Last 24 hours * n
No Event Sampling * Smart Mode ~

This will show all events that our server is collecting. you may not see many events, especially if you deleted the old json files we created
from our pcap files. You can create a few new alerts using ping if you want (remember we created that rule earlier) if you don’t see any alerts.
There is a slight lag between an event being generated and shown in Splunk. If you continue to not see any alerts, change the time range
(the drop-down set to the past 24 hours next to the search icon) to all time and re-run the search. If you still don’t see any events, check that
there are json files in your /var/log/snort folder.

Using Splunk

This guide does not go in-depth with using Splunk. There are excellent free resources available from Splunk which I mention below.

Noah Dietrich 20

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

Below are some simple searches you may find helpful in starting out. To show all events in a table with the time, source, destination, and
message, run the following search:

sourcetype="snort3:alert:json"
| table _time src_ap dst_ap msg

To show the count of all events by destination:

sourcetype="snort3:alert:json"
| stats count by dest

to show all events sources on a map:

sourcetype="snort3:alert:json"

| iplocation src_addr

| stats count by Country

| geom geo_countries featureIdField="Country"

(you may need to click on the “Visualization” tab, and then “line chart” and change it to Choropleth Map)

For many of your events, there will payload data (the b64_data) field that’s base64 encoded (http and SMTP are a good example of this). To
convert this data so we can read it, we use the “cyberchef” function to conver it for each event (on the fly), and add a new field to each event
called “decrypted”:

sourcetype="snort3:alert:json" dest_port=80
| cyberchef infield='b64_data' outfield=decrypted operation="FromBase64"
| table src_addr, dst_addr, rule, msg, decrypted

Some excellent free resources for using Splunk are:
EBook: Exploring Splunk: Search Processing Language (SPL) Primer and Cookbook

Free Online Training: - Free Splunk Fundamentals 1- Splunk Infrastructure Overview

Enabling Splunk’s Free License

Splunk is currently running in Free Enterprise Trial Mode, which is only good for 60 days. We want to convert this license into the free
mode, which is similar to Enterprise mode, with a few features removed. The feature you will notice missing are the ability to log onto the
server with a username and password (allowing anyone to log on). You also loose some features related to clustering, as well as the ability to
deploy Splunk apps to other servers (useful when you have more than one server or system to collect logs from).

To change the license: Click Settings along the upper right bar, and then click Licensing:
Click change license group. Select Free License and click Save. click Restart Now, and click OK.

you may now find that you can’t access the Spunk web interface from a remote computer, that’s ok, and we’ll fix that in the next section with
areverse proxy.

Reverse proxy for Splunk Web

Splunk with a free license doesn’t prevent access with a username and password, and will only allow access from the local machine (depeding
if you were connected locally when you switched licenses). Here we will setup a reverse proxy with apache listening on port 80 of this server,
which will regiure a password, and will redirect to the Splunk interface.

Install apache and the proxy modules:

Noah Dietrich 21

https://www.splunk.com/en_us/form/exploring-splunk-search-processing-language-spl-primer-and-cookbook.html
https://www.splunk.com/en_us/training/free-courses/splunk-fundamentals-1.html
https://www.splunk.com/en_us/training/free-courses/splunk-infastructure-overview.html

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

sudo

sudo
sudo
sudo

apt-get install -y apache2 apache2-utils

a2enmod proxy
a2enmod proxy_http
systemctl restart apache2

create a new user. you’ll be prompted for the password. Remember the user and password, as you’ll use it later. You can create multiple
users this way (replace with an actual username:

sudo
sudo

touch /etc/apache2/.htpasswd
htpasswd /etc/apache2/.htpasswd <username>

edit the apache configuration file to setup the proxy listening on port 80:

sudo

vi /etc/apache2/sites-available/000-default.conf

Enter the following information into this file. The file should already exist with some content. Below you can see what this file needs to

look like, with the comments remove. These new configuration options are telling apache to listen on port 80, require authentication (the
user/password in the htaccess file), and then forward all authorized connections to localhost port 8000 (where splunk is listening).

<VirtualHost *:80>

ServerAdmin webmaster@localhost
DocumentRoot /var/www/html

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

Added section for Splunk Reverse Proxy with authentication
ProxyPreserveHost On
ProxyPass / http://127.0.0.1:8000/
ProxyPassReverse / http://127.0.0.1:8000/
<Proxy x>
Order deny,allow
Allow from all
Authtype Basic
Authname "Password Required"
AuthUserFile /etc/apache2/.htpasswd
Require valid-user
</Proxy>

</VirtualHost>

Verify our apache configuration:

sudo apachectl -t

you may get an error about the servers FQDN, that’s not important.

Restart apache to load the changes:

sudo systemctl restart apache2

Configure Splunk to only accept connections from the local comptuer (redirected throug the proxy):

sudo vi /opt/splunk/etc/system/local/web.conf

Under the settings section, add one extra line: server.socket_host = localhost (if the file is empty, just add the following two lines, otherwise
add server.socket to the settings section):

Noah Dietrich 22

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

[settings]
server.socket_host = localhost

restart splunk to register the changes:

sudo service Splunkd restart

now try connecting to your splunk server on port 80, you should be prompted for a username and password. If you try connecting to port
8000, you should not be able to connect (unless you are connecting from the same computer).

Final Steps & System Cleanup

Congratulations, you should now have a complete Snort 3 NIDS with Splunk as your SIEM, and PulledPork to keep your rulesets updated.
There are a few housekeeping items you may want to think about:

Remove Old Files: You may want to remove the snort_src directory, if you don’t plan on compiling Snort again. You could also run make
clean in all the sub-directories in there to reduce space instead.

Disable local Rules: you may want to disable the local rule(s) that were created, so they don’t clog up your log file. Prepend a hash (#) to
each line in that file to disable the rule. Reload Snort to detect the change.

Log Rotation: Snort will save logfiles into /var/log/snort. Neither Snort nor Splunk will delete those logs, so you’ll need to look at some
way to archive or delete the old logfiles (the .json logfiles from Snort IPS alerts, or the OpenApplD stats files, if you followed those optional
instructions in Appendix A).

Adjust alert logged data: You may find that you don’t need as much data from the Snort alerts as what’s logged. You can remove some of
the fields from the alert_json section in your snort.lua file. You may also want to adjust the size of the files that are written, depending on
how often you plan on deleting the fies or how fast log files are generated.

You may want to install other Snort3 sensors on your network. If you do this, | recomend you install the Splunk Universal Forwarder (UF)
rather than Splunk Enterprise on those additional systems, and configure that UF to send the log data back to your main Splunk server

Conclusion

See the Snort 3 blog for more information about running Snort 3 and compilation options. Snort 3 is much different from the Snort 2.9.9.x
series. Both configuration and rule files are different, and not compatible between the two versions. Old Snort 2 configuration and rule files
can be converted to the Snort 3 format using the included snort2lua command.

Feedback: Please send me feedback with issues you encountered and recommendations for changes to this guide: Noah@SublimeRobots.
com. Feedback helps me to update these guides, and helps me identify common issues and questions that people encounter when running
through these instructions.

Appendix A: OpenAppID (Optional)

OpenApplD allows for the identification of application layer (layer 7) traffic. You can create rules that operate on application-layer traffic (for
example to block facebook or a specifc type of VPN), and to log traffic statistics for each type of traffic detected. more info. OpenAppID is
an optional feature that Snort offers, and you should enable it if you want to detect or block types of traffic (facebook, FTP, etc), or collect
metrics on the ammount of data per type of traffic that is detected by your Snort server.

First let’s enable the OpenApplID detectors (identifying traffic), then we’ll enable the recording of OpenAppID metrics

The Snort team has put together a package of detectors with assistance from the community that you can download and install, called the
Application Detector Package. First download the OpenAppID detector package and extract the files:

Noah Dietrich 23

https://blog.snort.org/
https://github.com/snortadmin/snort3/blob/master/doc/snort2lua.txt
mailto:Noah@SublimeRobots.com
mailto:Noah@SublimeRobots.com
http://blog.snort.org/2014/03/firing-up-openappid.html
https://blog.snort.org/2020/10/better-application-logging-with-snort3.html

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

cd ~/snort_src/

wget https://snort.org/downloads/openappid/21442 -0 OpenAppId-21442.tgz
tar -xzvf OpenAppld-21442.tgz

sudo cp -R odp /usr/local/lib/

Note: If you get an error that the file does not exist, it is possible that the Snort team updated the ruleset. Browse to https://snort.org/
downloads#openappid, and download the snort-openappid.tar.gz.

Next we need to edit our Snort configuration file to point to this odp directory:

sudo vi /usr/local/etc/snort/snort.lua

Locate the following sections and configure as follows in the Configure Inspection section (arround line 90 or so in your snort.lua):

appid =
{

app_detector_dir = '/usr/local/lib"',
}

Validate your snort.lua file as above since you’ve made changes.

modify our local.rules file with a new rule which will detect facebook traffic.

alert tcp any any -> any any (msg:"Facebook Detected"; appids:"Facebook"; sid:10000002; metadata:policy security-ips alert;)

We have added the rule to our local.rules, but since we are running Snort as a Daemon and it’s loading all rules from your pulledpork.rules
file, we need to run PulledPork3 to re-build the pulledpork.rules file and include our newly added local rule to detect facebook. Run one of
the following two commands depending on which version of PulledPork you are using to do this:

#PP2
sudo /usr/local/bin/pulledpork.pl -c /usr/local/etc/pulledpork/pulledpork.conf -1 -P -E -T

#PP3
sudo /usr/local/bin/pulledpork3/pulledpork.py -c /usr/local/etc/pulledpork3/pulledpork.conf

generate some facebook traffic (wget facebook.com), and you’ll see the alerts written to splunk (and to the json log file):

sourcetype="snort3:alert:json" msg="Facebook Detected"

Next, we can optionally configure Snort to capture OpenAppID statistics, basiclally how much data of each detected type is seen (how much
DNS data, how much facebook data, how much https data, etc).

We need to download the Snort Extras repository, which holds additional inspectors and plugins, including the appid_listener which will
allow us to output appid stats in JSON format.

cd ~/snort_src/

wget https://github.com/snort3/snort3_extra/archive/refs/tags/3.1.18.0.tar.gz -0 snort3_extra-3.1.18.0.tar.gz
tar -xzvf snort3_extra-3.1.18.0.tar.gz

cd snort3_extra-3.1.18.0/

./configure_cmake.sh --prefix=/usr/local

cd build

make

sudo make install

This will install the snort_extras to /usr/local/lib/snort_extra.

Next we want to enable the appid_listener plugin from snort_extras. We do this by adding the following command to our snort.lua (a good
place would be right after the appid section from above):

Noah Dietrich 24

https://snort.org/downloads#openappid
https://snort.org/downloads#openappid

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

appid_listener =
{
json_logging = true,
file = "/var/log/snort/appid-output.log",

This is a good time to test that the snort_extras plugins can be loaded (that requires an additional command line opton), and that the new
rule is correctly formatted. We run this with “sudo” because the appid_listener plugin tries to verify that it can open the logfile. Remember
that if you’re using the SO rules, you need to include the --plugin-path option twice, the second time to point to the so folder (or omit this
second invocation if not needed):

sudo snort -c /usr/local/etc/snort/snort.lua \
--plugin-path=/usr/local/lib/snort_extra --plugin-path=/usr/local/etc/so_rules

fix any errors you have before continuing. the --plugin-path paramter tells snort to load additional plugins from the extracted snort_extra
package, including the appid_listener plugin.

Now we need to modfy our systemD Snort script to enabe it to load the appid_listener directory with the --plugin-path option:

sudo vi /lib/systemd/system/snort3.service

add the --plugin-path option:

ExecStart=/usr/local/bin/snort -c /usr/local/etc/snort/snort.lua -s 65535 \
-k none -1 /var/log/snort -D -u snort -g snort -i ens3 -m Oxlb --create-pidfile \
--plugin-path=/usr/local/lib/snort_extra --plugin-path=/usr/local/etc/so_rules

reload the modified systemd file, reload snort, then verify that the service is running:

sudo systemctl enable snort3
sudo service snort3 restart
service snort3 status

Generate some network traffic (using wget, ping, or any other tool). You don’t have to match the rules, because we’re now collecting statistics
for all the detectors. Check your log directory for /var/log/snort/appid-output.log, which contains these trafic statistics in json format:

{ "session_num": "0.58", "pkt_time": "2020-12-19 09:51:46.540562", "pkt_num": 1665, "apps": { "service"
"HTTPS", "client": "SSL client", "payload": "Facebook", "misc": null, "referred": null }, "proto"
"TCP", "client_info": { "ip": "10.10.10.88", "port": 33942, "version": null }, "service_info": {
"ip": "185.60.216.35", "port": 443, "version": null, "vendor": null }, "user_info": { "id": o, "
username": null, "login_status": "n/a" }, "tls_host": "www.facebook.com", "dns_host": null, "http":
{ "http2_stream": null, "host": null, "url": null, "user_agent": null, "response_code": null, "
referrer": null } }

The service field tells you which services were detected for this traffic flow (the ODF detector).

Next,we need to configure the Snort 3 JSON Alerts add-on to tell Splunk where the OpenAppID log files are stored. Just like before, we do
this from the command line with a configuration file:

sudo vi /opt/splunk/etc/apps/TA_Snort3_json/local/inputs.conf

Add the following text into this inputs.conf file (don’t remove the other section that points to the alerts file):

[monitor:///var/log/snort/*appid-output.logx]
sourcetype = snort3:openappid:json

Noah Dietrich 25

Snort 3.1.18.0 on Ubuntu 18 & 20 2021-12-30

restart Splunk:

sudo service Splunkd restart

now search splunk for OpenApplID data:

search sourcetype="snort3:openappid:json"

Noah Dietrich 26

	Introduction
	Installing Snort
	Configuring Network Cards
	Configuring Snort
	PulledPork
	PulledPork3
	PulledPork Original
	Configuring Snort Plugins
	JSON Alerts Output Plugin
	Snort Startup Script
	Splunk
	Using Splunk
	Enabling Splunk's Free License
	Reverse proxy for Splunk Web
	Final Steps & System Cleanup
	Conclusion
	Appendix A: OpenAppID (Optional)

