
 1

Optimizing Pattern Matching for Intrusion Detection

Marc Norton

Abstract – This paper presents an optimized version of
the Aho-Corasick [1] algorithm. This design represents
a significant enhancement to the author’s original
implementation released in 2002 as part of an update to
the Snort Intrusion Detection System. The enhanced
design uses an optimized vector implementation of the
Aho-Corasick state table that significantly improves
performance. A memory efficient variant uses sparse
matrix storage to reduce memory requirements and
further improve performance on large pattern groups.

Intrusion Detection Systems are very
specialized applications that require real-time pattern
matching capabilities at very high network speeds, and
in hostile environments. Several of the major issues
that must be considered in pattern matching and
Intrusion Detection are discussed to establish a
framework for the use of the Aho-Corasick algorithm
as implemented in the Snort Intrusion Detection
System.

The performance results comparing the
original, optimized, and sparse storage versions of the
authors Aho-Corasick algorithm are presented. Tests
were conducted using several dictionary tests and a
Snort based Intrusion Detection performance test. The
impact of pattern group sizes and compiler selection on
performance is also demonstrated using several
popular compilers.

Index Terms – pattern matching, Aho-Corasick,
Intrusion Detection, IDS, Snort

I. INTRODUCTION

NORT is an open source Intrusion Detection System
that relies heavily on the Aho-Corasick multi-pattern

search engine. The performance characteristics of the
Aho-Corasick algorithm implemented in Snort have a
significant impact on the overall performance of Snort.
Snort scans network traffic packets searching for intruders
by looking for specific values in the network headers and
by performing a search for known patterns in the
application layer data.

Snort has utilized a high-speed multi-pattern
search engine since the release of version 2.0 in 2002.
The introduction of a multi-pattern search engine in Snort
was part of a larger enhancement to the detection engine to

Marc Norton is the Snort IDS Team Lead at Sourcefire,Inc
marc.norton@sourcefire.com; www.idsresearch.org

improve performance, allow for larger rule sets, and
achieve gigabit network performance levels [2].

The Sourcefire Intrusion Detection System uses
Snort and has been tested and certified via the OSEC [19]
test program to perform at 750 Mbits/sec in the OSEC test
environment. Although Snort has been shown to perform
well in gigabit network environments in the lab and at
customer sites the quest for better performance and deeper
inspection capabilities persists.

This paper presents an optimized Aho-Corasick
implementation that improves on the design of the state
table found in the author’s original version. It is faster
than the previous version, supports an optimized full
matrix state table, and a memory efficient state table using
a sparse matrix based storage method to minimize memory
requirements.

Many other methods have been proposed for
managing the storage and access of sparse state tables.
Johnson [20] and Yao [21] detail table-compression using
multiple vectors. Regular expression based search engines
such as Yacc and Lex use variants of these methods.
There are also hashing, trie, tree, and bitmap [10] methods.
All of these methods attempt to provide an optimal
minimum memory representation of the sparse state table,
but usually with a measurable loss of performance
compared to full matrix representations.

This paper presents some basic sparse matrix and
vector storage formats and applies one to the Aho-
Corasick state table. These particular methods of sparse
storage, while not new, do not appear to have been used
before to represent the Aho-Corasick state table. This may
be due in part to the fact that these methods do not provide
optimal solutions to minimizing memory. The storage
savings is also pattern dependent and may provide no
savings at all. Sparse storage does however offer
significant storage savings for the pattern groups used by
Snort to detect network attackers.

The selected sparse storage method requires only
minor changes to the optimized algorithm, offers better
performance than the author’s original version, and is
faster than the optimized version on large pattern groups in
the dictionary tests.

The full matrix version is 1.5 to 2.5 times faster
than the original version and the sparse matrix version is
1.2 to 1.7 times faster, depending on compiler, pattern
group size, search frequency, and search text size.

S

 2

II. PATTERN MATCHING AND INTRUSION DETECTION

The pattern search problem in Intrusion Detection
Systems is a specialized problem in it’s own right. It
requires consideration of many issues associated with
pattern searches. The following considerations should be
accommodated by any pattern search engine used for real-
time Intrusion Detection.

a) Multi-pattern search algorithms.
b) Pattern character case sensitivity.
c) Pattern sizes.
d) Pattern group size.
e) Alphabet size.
f) Algorithmic attacks.
g) Search text size.
h) Frequency of searches.

These design issues are dis cussed below to

establish a framework for pattern matching in Intrusion
Detection Systems and the enhancements provided by the
Aho-Corasick search engine in this paper.

a) The real-time nature of inspecting network packets
requires the use of a pattern search engine that can keep up
with the speeds of modern networks. There are two types
of data we use in this type of search, the patterns and the
search text. The patterns are pre-defined and static. This
allows them to be pre-processed into the best from suitable
for any given pattern match algorithm. The search text is
dynamically changing as each network packet is received.
This prohibits us from pre-processing the search text prior
to performing the pattern search. This type of pattern
search problem is defined as a Serial pattern search [6].
The Aho-Corasick algorithm is a classic serial search
algorithm, and was first introduced in 1975 [1]. Many
variations have been inspired by this algorithm, and more
recently Intrusion Detection Systems have generated a
renewed interest in the algorithm due to some of its’
unique properties.

b) Intrusion Detection Systems search for patterns that can
be either case sensitive or case insensitive. The Aho-
Corasick algorithm as originally described is a case
sensitive pattern search engine. This version of the Aho-
Corasick algorithm supports case sensitive and case
insensitive patterns. This is accomplished by converting all
patterns to upper case prior to insertion in the state
machine, and than converting each character of the search
stream to upper case for comparison as the stream is
processed. This effectively produces a case independent
search and guarantees no patterns are missed. If a pattern
match is found and it is case sensitive, it is re -tested
against the exact search text characters in a case sensitive
manner to verify the match.

c) The size of the patterns used in a search can
significantly affect the performance characteristics of the
search algorithm. State machine based algorithms such as
the Aho-Corasick algorithm are not affected by the size of
the smallest or largest pattern in a group. Skip based
methods such as the Wu-Manber algorithm and others that
utilize character skipping features are very sensitive to the
size of the smallest pattern. The ability to skip portions of
a search text can greatly accelerate the search engines
performance. However, skip distance is limited by the
smallest pattern. Search patterns in Intrusion Detection
represent portions of known attack patterns and can vary in
size from 1 to 30 or more characters but are usually small.

d) The pattern group size usually affect IDS performance
because the IDS pattern search problem usually benefits
from processor memory caching. Small pattern groups can
fit within the cache and benefit most form a high
performance cache. As pattern groups grow larger, less of
the pattern group fits in the cache, and there are more
cache misses which reduces performance. Most search
algorithms will perform faster with 10 patterns than they
do with 1000 patterns, for instance. The performance
degradation of each algorithm as pattern group size
increases varies from algorithm to algorithm. It is
desirable that this degradation be sub-linear in order to
maintain scalability. The Aho-Corasick algorithm
generally provides good scalability for the pattern groups
used in Intrusion Detection, and as demonstrated in the test
data shown below.

e) The alphabet size used in current Intrusion Detection
Systems is defined by the size of a byte. An 8-bit byte
value is in the range 0 to 255, providing Intrusion
Detection Systems with a 256-character alphabet. These
byte values represent the ASCII and control characters
seen on standard computer keyboards and other non-
printable values. For instance, the letter ‘A’ has a byte
value of 65. Extremely large alphabets such as Unicode
can be represented using pairs of byte values, so the
alphabet the pattern search engine deals with is still 256
characters. This is a large alphabet by pattern matching
standards. The English dictionary alphabet is 52
characters for upper and lower case characters, and DNA
research uses a four character alphabet in gene sequencing.
The size of the alphabet has a significant impact on which
search algorithms are the most efficient and the quickest.
Navarro [4] covers this topic and presents charts showing
the best choice of search algorithms based on the alphabet
size and minimum patterns sizes with data for patterns of
five bytes or more. This paper extends that that pattern
range to include pattern matching issues relevant to large
alphabets and small pattern sizes of less than five
characters.

 3

f) Algorithmic attacks attempt to use the properties and
behaviors of a search algorithm against itself to reduce the
algorithm’s performance. The performance behavior of an
algorithm should be evaluated by considering it’s average-
case and worst-case performance. Algorithms that exhibit
significantly different worst-case and average-case
performance are susceptible to these attacks. Skip based
algorithms , such as the Wu-Manber algorithm [3], utilize a
character skipping feature similar to the bad character shift
in the Boyer-Moore algorithm. Skip based algorithms are
sensitive to the size of the smallest pattern since they can
be shown to be limited to skip sizes smaller than the
smallest pattern. A pattern group with a single byte pattern
cannot skip over even one character or it might not find the
single byte pattern.

The performance characteristics of the Wu-
Manber algorithm can be attacked, as shown by Tuck et al.
[10], and significantly reduced by malicious network
traffic resulting in a Denial of Service attack. This type of
attack requires degenerate traffic of small repeated
patterns. This problem does not exist for text searches
where algorithmic attacks are not intentional and are
usually very rare. It is a significant issue in Intrusion
Detection Systems where algorithmic attacks are prevalent
and intentional. The Wu-Manber algorithm does not
achieve its best performance levels in Snort because Snort
rules often include very small search patterns of one to
three characters, eliminating most of the opportunities to
skip sequences of characters. In practice, Snort exhibits
little differences in performance between the Wu-Manber
and the author’s original Aho-Corasick algorithm in the
average-case, but Wu-Manber can be significantly slower
in algorithmically designed attack traffic.

The strength of skip-based algorithms is evident
when all of the patterns in a group are large, they can skip
many characters at a time and are among the fastest
average-case search algorithms available.

The Aho-Corasick algorithm is unaffected by
small patterns, and its’ worst-case and average-case
performance are the same. This makes it a very robust
algorithm for Intrusion Detection.

g) The size of a search text in Intrusion Detection Systems
is usually less than a few thousand bytes. In general when
searching a text, the expense of setting up the search and
filling the cache with the necessary search pattern
information is usually fixed. If the search is performed
over just a few bytes, than spreading the setup costs over
those few byte results in a high cost per byte. Whereas , if
the search text is very large spreading the setup cost over
the larger search text results in very little overhead cost
added to searching each byte of text.

h) The frequency of searching in an Intrusion Detection
System is dependent on the network bandwidth, the
volume of traffic on the network, and the size of the

network packets. This implies that the frequency of text
searches and the size of each search text are related due to
the nature of the network traffic being searched. Again, as
with search text size, a high frequency of searching in an
Intrusion Detection System will cause the search setup
costs to be significant compared to doing fewer larger text
searches.

III. THE AHO-CORASICK STATE MACHINE

The Aho-Corasick state machine is a specialized

finite state machine. A finite state machine is a
representation of all of the possible states of a system,
along with information about the acceptable state
transitions of the system. The processing action of a state
machine is to start in an initial state, accept an input event,
and move the current state to the next correct state based
on the input event. It is easy to visualize a state machine
as a matrix where the rows represent states and the
columns represent events. The matrix elements provide the
next correct state to move to based on the input event and
possibly some specific action to be done or information to
be processed when the state is entered or exited.

A simple example may clarify the state transition
process. If the current state is state 10 and the next input
event is event 6, than to perform a state transition you
would find the matrix element at row 10 and column 6 in
the matrix and change the current state to the state
indicated by the value of this matrix element.

The Aho-Corasick state machine as implemented
in Snort uses a Deterministic Finite Automata also called a
DFA. A unique property of a DFA is that upon examining
an input character in the text stream it requires exactly one
transition of the state machine to find the correct next state.
This is in contrast to a Non-Deterministic Finite Automata,
also called a NFA, which can require more than one state
transition to find the correct next state. A DFA can
process data faster than an NFA since it requires fewer
transition steps. Aho-Corasick [1] indicates that an NFA
can require up to 2 times the transitions of the DFA to
search a stream of data. The construction and structure of
the state table matrix of a DFA is also more complicated
than that of a NFA. Aho-Corasick [1] also shows how a
DFA can be constructed from an NFA by pre-processing
all of the possible state transitions in the NFA until it can
be determined how to perform all state transitions in a
single step. This procedure has the tendency to fill in more
elements of the state table matrix. The physical
representation of the Aho-Corasick state transition table
varies from one implementation to the next. The choice of
the state table representation determines the memory and
performance tradeoffs of the search algorithm.

 4

IV. SPARSE STORAGE FORMATS

 Sparse matrices and vectors contain a significant
number of zero elements and only a few non-zero
elements. Methods and storage formats used for operating
on sparse structures efficiently are well developed in the
field of Linear Algebra and utilized in many branches of
science. There are many books and publicly available
codes for operating on sparse matrices and structures. The
structures of most interest to this paper are those
representing sparse vectors. It is not sufficient to store
sparse data efficiently. The storage format must also allow
for fast random access to the data.
 A sample sparse matrix is shown in figure 1
containing six rows and four columns.

 0 0 0 3
 0 4 0 1
 0 0 0 6
 1 0 0 0
 0 2 0 0
 0 0 5 0

 Figure 1

This matrix is a general rectangular matrix with only a few
non-zero elements. Using the Compressed Row Storage
CSR format [14] it can be stored as shown in figure 2.

CSR Matrix Format

Value : 3 4 1 6 1 2 5
Column : 4 2 4 4 1 2 3
Row : 1 2 4 5 6 7

 Figure 2

This format requires three vectors to hold only the non-
zero entries. They are a value vector, a column vector and
a row vector. The Column array indicates the column the
corresponding value in the Value array belongs to in the
matrix. The Row index indicates the index in the Column
and Value arrays where each row starts. There are seven
entries in each of the value and column vectors, since there
are seven non-zero entries in the matrix. There are six
row entries, since there are six rows in the matrix. For
instance, the third Row entry indicates the third row starts
at the fourth entry in the Column and Value arrays. This is
one of the simplest sparse storage schemes for a matrix
and can be broken down to handle vectors by considering a
single row to be a vector as shown Figure 3. We will call
this the compressed sparse vector format.

Compressed Sparse Vector Format

Vector: 0 0 0 2 4 0 0 0 6 0 7 0 0 0 0 0 0 0 0 0

 Values: 2 4 6 7
 Index: 4 5 9 11

 Figure 3

The Index array indicates the vector array index of the
corresponding Value. There are four non-zero values,
hence we have four entries in the Index and Value arrays.
We can merge our Value and Index arrays together into
one integer array as shown in Figure 4. We will call this
the sparse-row format.

Sparse-Row Format

Sparse-Row Storage: 8 4 2 5 4 9 7 11 7

 Figure 4

Here we have nine entries, the first is the total number of
words that follows, followed by eight numbers
representing four pairs of numbers in index-value order.
Now we have a single array of nine entries, eight in index-
value order. This could also be represented as an array of
four C language structures each having an Index and a
Value entry. In either case, we only need an array of the
non-zero entries, and we need to track how many entries
we keep. This storage scheme works well at minimizing
the total storage of a sparse vector and works well in
applications where we have to sequentially touch every
element of the vector, such as in matrix-vector multiplies.
However, for randomly looking up an individual entry this
format requires us to search through the array to find the
correct index.

Another representation of the vector in Figure 3
uses the banded nature of the vector to store the elements
efficiently and allows us to maintain random access to its
elements. We call this the banded-row format, and it is
shown in Figure 5.

 Banded-Row Format

Num Items: 8
Start Index: 4
Values: 2 4 0 0 0 6 0 7
Band Array: 8 4 2 4 0 0 0 6 0 7

 Figure 5

The Banded-Row format stores elements from the first
non-zero value to the last non-zero value, the number of
terms stored is known as the bandwidth of the vector.
Small bandwidth corresponds to large storage savings. To
manage access to the data we only need to track the
number of data elements and the starting index of the data.
This format reduces the storage requirements, and still
provides fast random access to the data. Many problems

 5

express themselves as banded matrices, in which case the
banded-row format can be used for each row in the matrix.
This type of banded storage makes no requirements of how
the banded-ness of one row will correspond to banded-ness
in another row.

The literature on storing and operating on Sparse
Matrices and Banded Matrices are quite extensive. We
have only scratched the surface of sparse matrix
technology but it will suffice to improve the Aho-Corasick
state table storage requirements.

V. THE OPTIMIZED AHO-CORASICK

 The optimized Aho-Corasick is a refinement of
the author’s original version released in Snort in 2002.
The state table is managed somewhat differently and this
allows the search routine to be compiled to a more optimal
instruction mix. Previously each entry in the state table
had a vector of transitions for the state, a failure pointer for
the NFA version of the table, and a list of matching
patterns for the state, all contained in one structure. The
previous state table is now broken into a state transition
table, an array of per state matching pattern lists, and a
separate failure pointer list for each state for the NFA.

The state transition table is a list of pointers to
state vectors. Each state vector represents the valid state
transitions for that state. Additionally, each vector also
includes a small header that indicates the storage format of
the row, and a Boolean flag indicating if any pattern
matches occur in this state. The state transition data
follows the header. Another change to the code was to
convert each input character to uppercase as it is processed
in the search. Previously the entire input text was
converted prior to the search. Together these changes are
shown in the tests below to significantly improve the
performance of the previous algorithm.
 The search routine is a small piece of code that
essentially jumps from state to state based on the input
characters in the text stream. A state machine operates by
maintaining a current state, accepting an input event (a
character in our case), and using a table or matrix to
lookup the correct next allowed state based on the current
state and input event as follows:

while (input = next -input)
{
 state = state-transition-table[state, input]
 if(patterns matched in this state) process patterns….
}

It would appear that there is not a lot of
opportunity for optimizing such a simple state machine.
Yet optimizing this functionality of this state machine for
both maximum speed and minimum storage has been the
basis of extensive research for many years.

The code below shows the basic algorithm for the
search used by the optimized Aho-Corasick algorithm.

for (state = 0; T < Tend; T++)
{
 ps = NextState[state];
 sindex = xlatcase[T[0]];
 if(ps[1])
 {
 for(mlist = MatchList[state];
 mlist != NULL;
 mlist = mlist->next)
 {
 /* process the pattern match */
 }
 }
 state = ps[2u + sindex];
 }
 The NextState array is the array of pointers to the
row vectors of the state table. The ‘ps’ variable is used to
point to the current state’s transition vector. The first two
words of the ‘ps’ array are the storage format and the
boolean match flag. The ‘T’ parameter is the text being
searched, and ‘xlatcase’ converts the text one byte at a
time to upper case for a case independent search. Once a
match is found the pattern is processed.

A check is made using ps[1] to determine if any
patterns are matched in the current state, if not the state
machine cycles to the next state. If there is a match all of
the patterns that match in the current state are processed in
the ‘for’ loop.

All of the compilers tested produced significantly
faster code with this version than they did with the original
version.

VI. THE SPARSE STORAGE AHO-CORASICK

The sparse storage format used in this version is

the banded-row format previously described. The vectors
of the state transition table are somewhat different for the
banded-row format. The first word indicates the storage
format and the second word indicates if any patterns match
in this state as in the optimized full vector version. The
third word indicates the number of terms that are stored for
the row, and the fourth word indicates the index of the first
term. The banded-row format allows us to directly index
into the entry we wish to access. However, we must be
careful now to do a bounds check prior to each indexing
operation.

for (state = 0; T < Tend; T++)
{
 ps = NextState[state];
 sindex = xlatcase[T[0]];
 if(ps[1])
 {
 for(mlist = MatchList[state];

 mlist != NULL;

 6

 mlist = mlist->next)
 {

/* process the pattern match */
 }
 }
 /* Bounds check & state transition */
 if(sindex < ps[3]) state = 0;
 else if(sindex >= (ps[3] + ps[2])) state = 0;
 else state = ps[4u + sindex - ps[3]];
 }
 The bounds check is likely to reduce performance
compared to the optimized version. Testing below
presents a somewhat different picture and shows that with
large pattern groups this algorithm out performs the
optimized version.

VII. PERFORMANCE METRICS

The performance metrics for evaluating a multi-
pattern search engine will be broken into three categories;
algorithmic, computational, and problem domain metrics.

Algorithmic or theoretical metrics are based on
consideration of the algorithm independent of the hardware
or software. Worst-case behavior is an example of an
algorithmic metric. Typically, the worst-case performance
of a multi-pattern search engine is proportional to the size
of the patterns and the length of the data being searched.
The Aho-Corasick algorithm implemented by the author is
an O(n) algorithm, indicating the search speed is
proportional to n, the length of the data being searched.

Computational metrics are based on examining
how an algorithm interacts with the computer hardware it
runs on. The significant metrics we will consider are
instruction mix, caching properties and pattern group size,
and the search text length.

The instruction mix refers to the type of hardware
instructions required by the algorithm. A sophisticated
instruction mix might be indicative of algorithms that
require special purpose machine instructions or hardware
to work efficiently. This Aho-Corasick algorithm has no
special instruction mix requirements and can run well on
most general-purpose computers.

The caching properties of an algorithm can
significantly affect performance. The strongest indicators
of caching performance are cache size and data locality.
Data locality can be defined by the relative amount of
sequential versus random memory access the algorithm
performs in and out of the cache. The Aho-Corasick
algorithm jumps from state to state in the state table.
These jumps are data driven, and are essentially random.
If only a small part of the state table can fit in the
computer’s cache, there are likely to be many cache
misses, and a cache miss may cost 10 times that of a cache
hit. Therefore, the performance of the Aho-Corasick
algorithm is very sensitive to the size of the cache, and
whether the state table can fit in the cache. Ideally, the

cache should be large enough to hold the entire state table
and have room left to bring the search data into the cache
as needed. This only happens for small state tables, or on
systems with very large caches. The state table size is
proportional to the total number of characters in all of the
patterns included in the search.

The last issue we’ll consider in measuring pattern
matching performance is the problem domain of the
search. The particular problem we apply a pattern
matcher to defines the size of the search text, the number
of patterns, and the frequency of searches. The problem
domain that Snort is used in requires searching network
traffic for known attack patterns. The pattern group sizes
used in the Snort IDS are up to a thousand or more
patterns. Snort searches network packets that average 600-
800 bytes in each search, and Snort does this up to 200,000
times a second. In between pattern searches, other
operations occur in Snort that potentially flush the cache.
Each time a pattern search is started, the cache has to be
reloaded which can represent a noticeable setup cost for
each search. In direct contrast to this type of search is the
sequential search of a very large data stream. This type of
search allows the higher performance cached data accesses
to greatly accelerate the overall search performance. The
dictionary test below demonstrates this behavior.

VIII. TEST RESULTS

The test results for the new Aho-Corasick
implementation includes benchmark data for the standard
Aho-Corasick previously used in Snort, the new optimized
version using full matrix storage, and the optimized
version using banded-row storage.

The testing was divided into two types of pattern
search tests. Dictionary tests are often used to demonstrate
the relative merits of pattern search engines. The
dictionary test selected was used to provide a long stream
of text to search providing the software an opportunity to
achieve the best possible caching performance. A network
traffic capture file was also used and demonstrates the
relative performance of all three versions of the Aho-
Corasick algorithm as implemented in Snort.

Dictionary Test

The dictionary test selected 1000 patterns from
throughout an online King-James bible. These patterns
were used in groups of 10 to 1000 to search through the
1903 Webster’s unabridged dictionary, about 2.3
megabytes of data. This ensured that there were plenty of
successful pattern matches, causing the test to provide
complete coverage of the search routine by executing both
byte testing and matching pattern code.

The three versions of the Aho-Corasick algorithm
tested included the standard version already in use in
Snort, which treats the state table as a full matrix, the new

 7

optimized version again using full matrix storage, and the
new optimized version using banded-row storage.

A test bed was developed that included several
different compiled versions of each of the Aho-Corasick
routines to be tested. The compilers used include
Microsoft VC 6.0, Intel C 6.0, and the Cygwin gcc 3.3.1
compiler. Using three different compilers provided
broader insight into the performance and caching behavior
of the search algorithm and storage methods .

All results are for the DFA version of the Aho-
Corasick algorithm. The exact results for the dictionary
tests are shown in Charts 1, 2 and 3, results normalized
against the standard Aho-Corasick algorithm are shown in
Charts 4, 5, and 6. These tests were conducted using 16 bit
state values on a Dell 8100 1.7 GHz system with 1 G-bytes
of RAM.

Intel-C 6.0
MBytes/Sec

0
20

40
60

80
100

120

10 25 50 100 300 500 1000

Number Of Patterns

AC
AC OPT
AC BAND

Chart 1

gcc-cygwin 3.3.1
 MBytes/Sec

0

20
40
60

80
100

120

10 25 50 100 300 500 1000
NumberOf Patterns

AC
AC OPT
AC BAND

Chart 2

VC 6.0
 MBytes/Sec

0

20
40
60

80
100

120

10 25 50 100 300 500 1000
NumberOf Patterns

AC
AC OPT
AC BAND

Chart 3

Intel-C 6.0
Normalized Performance

0

0.5

1

1.5

2

10 25 50 100 300 500 1000

Number Of Patterns

AC
AC OPT
AC BAND

Chart 4

gcc-cygwin 3.3.1
 Normalized Performance

0

0.5

1

1.5

2

10 25 50 100 300 500 1000
NumberOf Patterns

AC
AC OPT
AC BAND

Chart 5

 8

VC 6.0
Normalized Performance

0

0.5
1

1.5

2
2.5

3

10 25 50 100 300 500 1000
NumberOf Patterns

AC
AC OPT
AC BAND

Chart 6

The optimized versions perform significantly

better than the standard version in the dictionary tests with
all three compilers. Comparing the compiler results in
Charts 1, 2, and 3 shows the Intel compiler ranked best in
raw performance. The gcc compiler performed better than
the VC60 compiler with the standard Aho-Corasick, but
the VC60 compiler performed better than the gcc compiler
with both the optimized and banded Aho-Corasick.

All three compilers produced similar performance
trends. We see at least a 1.4 times speed improvement of
the optimized version over the standard version, except for
Microsoft where we see as much as a 2.5 times
improvement on smaller pattern groups. The optimized
banded-row storage version also produces a significant
speedup. In fact, it performed the best on the largest
pattern group. All three compilers show the optimized full
matrix version to be faster than the banded-row version for
all pattern group sizes up to 500 patterns. At 1000
patterns, the banded-row version outperforms the
optimized full matrix version for all three compilers.

The storage requirements for the different pattern
group sizes are shown in Chart 7, with the tabular results
shown in Table 1 for brevity. These results reflect a 16 bit
state size.

Patterns vs Kbytes

 AC STD AC OPT AC BAND
10 58 30 3
25 182 93 9
50 370 188 19

100 729 371 41
300 2333 1160 130
500 3884 1930 239
1000 7567 3760 527

Table 1

Storage
Mbytes vs Patterns

0
1
2
3
4
5
6
7
8

10 25 50 100 300 500 1000
Patterns

AC-STD
AC-OPT
AC-BAND

Chart 7

The optimized version uses one-half the memory of the
standard version, due to its use of a 16-bit word size for
state values. The banded-row storage uses about one-
fifteenth the storage of the standard version, and about
one-seventh the storage of the optimized full matrix
version.

State Size Tests

The optimized and banded Aho-Corasick can use
either 16-bit state or 32-bit state values. The 16-bit state
values are limited to 2^16 or 65K states. The 32-bit state
values are limited to 2^32 or 4 billion states. The merit of
using 16-bit states is reduced memory consumption.
Charts 8, 9, and 10 compare the performance of the 16-bit
(AC OPT) and the 32-bit (AC OPT 32) optimized Aho-
Corasick for the three compilers. Charts 11-13 compare
the performance of the 16-bit (AC BANDED) and the 32-
bit (AC BANDED 32) banded-row Aho-Corasick for the
three compilers.

Intel C 6.0
AC OPT vs AC OPT 32

MBytes/Sec

0

20
40
60

80
100

120

10 25 50 100 300 500 1000
NumberOf Patterns

AC OPT

AC OPT 32

Chart 8

 9

gcc-cygwin 3.3.1
AC OPT vs AC OPT 32

MBytes/Sec

0

20

40

60

80

100

120

10 25 50 100 300 500 1000

NumberOf Patterns

AC OPT

AC OPT 32

Chart 9

VC 6.0
AC OPT vs AC OPT 32

MBytes/Sec

0

20

40

60

80

100

120

10 25 50 100 300 500 1000

NumberOf Patterns

AC OPT

AC OPT 32

Chart 10

Intel C 6.0
AC BANDED vs AC BANDED 32

MBytes/Sec

0

20

40

60

80

100

120

10 25 50 100 300 500 1000

NumberOf Patterns

AC BANDED

AC BANDED 32

Chart 11

gcc-cygwin 3.3.1
AC BANDED vs AC BANDED 32

MBytes/Sec

0

20

40

60

80

100

120

10 25 50 100 300 500 1000

NumberOf Patterns

AC BANDED

AC BANDED 32

Chart 12

VC 6.0
AC BANDED vs AC BANDED 32

MBytes/Sec

0

20

40

60

80

100

120

10 25 50 100 300 500 1000

NumberOf Patterns

AC BANDED

AC BANDED 32

Chart 13

There are only minor differences between the 16

and 32 bit versions of both the optimized and banded
versions of the algorithm. The VC60 compiler
demonstrates the largest difference across all pattern sizes
and favors the 32 bit state size.

Snort Test

Snort processes packets on standard Ethernet
based networks that are up to 1460 bytes of data per
packet. This type of data tests search performance and
search setup costs on smaller search texts, and in a
relatively cache unfriendly environment. The tests were
performed by replaying previously captured traffic directly
into Snort. The compiler used was the Intel C 6.0
compiler on Linux. The test file selected represents about
2 G-bytes of web centric traffic. It was selected since
Snort allows us to select how much of the traffic is
inspected in each web request. The test works as follows;
Snort was configured to inspect the first 300 bytes of each
web page request. This is typically how Snort might be
configured. The Unix time command was used and the file
was processed as usual, noting the user processing time.

 10

Snort then was configured to inspect each of the web pages
completely as requested from the server. Once again,
Snort was run and the user processing time was noted.
The difference in times represents the pure pattern
matching time required to pattern match the extra data.
This test did not measure absolute performance. It does
show the relative performance differences of each search
engine in processing the additional data.

This test was run with each version of the Aho-
Corasick algorithm and the Wu-Manber algorithm. The
Wu-Manber algorithm in Snort is generally a very fast
algorithm on average, but does not have a good worst-case
scenario. It is included here to show the relative merits of
its good average case performance compared to the Aho-
Corasick algorithms.

The time differences, computed speed, and
performance increase over the standard Aho-Corasick is
shown in table 2 and chart 14. These tests used a 16 bit
state size, were run on a system with dual 2.4 GHz Xeon
cpus, and 2 G-bytes of RAM.

Snort Web Test

 Time

Diff
Speed

Increase
Performance

 Increase
Memory
M-bytes

AC_STD 12.4 0% 0% 56
AC_OPT 8.5 31% 46% 28
AC_BAND 10.3 17% 20% 14
Wu-Manber 12.1 2% 2% 26

Table2

Snort Web Test

0 5 10 15

AC OPT

AC BAND

AC- STD

WU-MAN

Difference (Seconds) To Process File

Chart 14

 The optimized and banded Aho-Corasick
algorithms are significantly faster than the standard Aho-
Corasick and the Wu-Manber algorithm. The web rules in
Snort contain many small two byte patterns. This prevents
the Wu-Manber algorithm from benefiting from a bad
character shift strategy.

The optimized algorithm is 31 percent (8.5/12.4)
faster, this means the engine can perform 46 percent
(12.4/8.5) more pattern matching in the same time, and

requires one-half the memory of original algorithm. The
banded algorithm is 17 percent faster and yields a 20
percent performance gain, and uses about one-fourth of the
memory of the standard Aho-Corasick algorithm.

IX. SUMMARY

The Aho-Corasick search algorithm has been
studied extensively since its inception in 1975. Intrusion
Detection Systems operate in a real-time domain where
searches are serial, patterns are often very small, pattern
group sizes are often over a thousand patterns, searches
occur up to 200,000 times a second, and attackers exploit
the worst-case properties of these algorithms.

The Aho-Corasick algorithm when implemented
using a DFA provides a strong basis for dealing with
Intrusion Detection pattern searches. The enhancements
made in this paper are designed to maintain the best
properties of the Aho-Corasick algorithm and improve its
performance.

 Sparse storage using banded-rows was
introduced to reduce cache misses and improve
performance. This storage format requires a bounds check
for each state transition, this adds a fixed cost test. As
pattern groups grow larger the fixed cost of bounds
checking is mitigated by better caching behavior as shown
in the dictionary tests and the Snort test.

The tests used demonstrate that there are
significant differences in the quality of the machine code
generated by different compilers for the same source code.
In spite of advances in modern code optimizers, an
algorithm’s performance is still very dependent on the
developer crafting source code to best match the
hardware’s processing characteristics.

Dictionary testing shows the optimized Aho-
Corasick implementation is 1.5 to 2.5 times faster than the
current version, depending on the compiler selected and
pattern group size. Storage was reduced by as much as 93
percent. These tests results show that the optimized sparse
storage version demonstrates better performance for large
pattern groups than the optimized full matrix version.

Snort testing shows the optimized version is 31
percent faster, yielding 46 percent more pattern matching
capacity, and uses one-half the memory of the author’s
original version. The optimized sparse storage version is
17 percent faster than the original, yielding 20 percent
more pattern matching capacity, and uses less than one-
fourth the memory of the original version.

This paper has presented an updated version of
the author’s original Aho-Corasick algorithm and
demonstrated that it provides a significant improvement in
pattern matching performance when used with an Intrusion
Detection System, and in general dictionary testing.

 The optimized Aho-Corasick source code can be
found in the Snort source code at www.snort.org or along
with this paper at www.idsresearch.org.

 11

ACKNOWLEDGEMENTS

 Thanks to Dan Roelker at Sourcefire for the many
discussions on pattern matching and Intrusion Detection
Systems, and your significant editorial suggestions.

Thanks to Marty Roesch and Sourcefire for
supporting this research.

REFERENCES

1. Alfred V. Aho and Margaret J. Corasik. Efficient

String Matching: An Aid to Bibliographic. Search:
Bell Labs, Communications of the ACM Jun 1975
Volume 18 Number 6.

2. Marc Norton and Daniel Roelker. Snort Multi-Rule
Inspection Engine. www.idsreseach.org/papers.html

3. Sun Wu and Udi Manber. A Fast Algorithm For
Multi-Pattern Searching. May 1994.

4. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman.
Compilers Principles, Techniques, and Tools.
Addison Wesley 1986 ISBN 0-201-10088-6, I.S. Duff,
A.M. Erishman, J.K. Reid. Direct Methods for Sparse
Matrices. Oxford University Press 1986, ISBN 0-19-
85342103

5. Gonzalo Navarro and Mathieu Raffinot. Flexible
Pattern Matching in Strings. Cambridge University
Press 2002, ISBN 0-521-81307-7

6. Alberto Apostolico and Zvi Galil. Pattern Matching
Algorithms. Oxford University Press, 1997, ISBN 0-
19-511367-5

7. Dan Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambride University Press 1997, ISBN 0-
521-58519-8

8. C. Jason Coit, Stuart Staniford, Joseph McAlerney.
Towards faster String Matching for Intrusion
Detection or Exceeding the Speed of Snort. Silicon
Defense.

9. Mike Fisk, George Varghese. Fast Content-Based
Packet Handling for Intrusion Detection. 2002.

10. Stephen Gossen, Neil Jones, Neil McCurdy, Ryan
Persaud. Pattern Matching in SNORT. 2002

11. Nathan Tuck, Timothy Sherwood, Brad Calder,
George Varghese. Deterministic Memory Efficient
String matching Algorithms for Intrusion Detection.
2003.

12. Robert S. Boyer., J. Strother Moore. A fast string-
searching algorithm. Commun. ACM, 20, #10, Oct
1997, pp.776-772

13. R.N.Horspool. Practical fast searching in strings.
Softw Pract Exper., 10, #3, 1980, pp 501-506.

14. Beate Commentz-Walter. A string-matching
algorithm fast on the average. Automata, Languages,
and Programming, Levture notes in Computer Science
#71, ed. By H.A. Maurer, Springer-Verlag, Berlin,
1979, pp 118-132

15. Donald E. Knuth, James H. Morris Jr, Vaugh R. Pratt.
Fast pattern matching in strings. SIAM J. Comput., 6,
#2, June 1997, pp. 323-350

16. I.S.Duff, A.M.Erisman, J.K.Reid. Direct methods for
Sparse Matrices, Oxford University Press, 1986, ISBN
0-19-853421-3

17. Sparse matrix related resources can be found at
www.vlsicad.cs.ucla.edu/sparse.html .

18. Andrew Binstock, John Rex. Practical Algorithms for
Programmers, Addison-Wesley, 1995. ISBN 0-201-
63208-X

19. OSEC - http://osec.neohapsis.com
20. Johnson, S.C. [1975]. Yacc – Yet another compiler

compiler, Computing science technology report 32,
AT&T Bell Laboratories, Murray Hill, N.J.

21. Tarjan, R.E., and Yao, A.C.-C. Storing a sparse table.
Commun. ACM 21, 11 (Nov 1979)

